1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
3 years ago
9

Which of the following statements best describes the method of energy conservation known as cogeneration?

Physics
1 answer:
Mazyrski [523]3 years ago
6 0

Answer:

heat and power

Explanation:

is the simultaneous production of electricity and heat both of which are used

You might be interested in
A force of 100N is applied to move an object a horizontal distance of 20m to the right. The work done by this force on the objec
horsena [70]
WORKDONE = FORCE * DISPLACEMENT
W=F*S
HERE, THE FORCE = 100N AND DISTANCE = 20M
WORKDONE = 100*20
WORKDONE=2000
ITS S.I UNIT IS JOULE OR J
SO, 2000J
5 0
3 years ago
Since the Sun has more mass, why do objects on earth not move closer to the Sun instead of staying put on Earth?
maw [93]

Answer:

Because the Earth has it's own gravity that keeps us put, and we also have the moon.

Explanation:

6 0
3 years ago
The drawing below shows two different types of pulley systems designed to lift a weight. In pulley system A, the end of the rope
nadya68 [22]
The answer would be in the chart or graph A is 1 B is 2
4 0
3 years ago
Read 2 more answers
NASA is designing a Mars-lander that will enter the Martian atmosphere at high speed. To land safely it must slow to a constant
Viktor [21]

Answer:

a) maximum mass of the Mars lander to ensure it can land safely is 200 kg

b) area of the parachute required is 480 m² which is larger than 400 m²

c) area of the parachute should be 12.68 m²

Explanation:

Given the data in the question;

V = 20 m/s

A = 200 m²

drag co-efficient CD = 1.855

g = 3.71 m/s²

density of the atmospheric pressure β = 0.01 kg/m³

a. Calculate the maximum mass of the Mars lander to ensure it can land safely?

Drag force FD = 1/2 × CD × β × A × V²

we substitute

FD = 1/2 × 1.855 × 0.01 kg/m × 200 m² × ( 20 m/s )²

FD = 742 N

we know that;

FD = Fg

Fg = gravity force

Fg = mg

so

FD = mg

m = FD/g

we substitute

m = 742 N / 3.71 m/s²

m = 200 kg

Therefore, the maximum mass of the Mars lander to ensure it can land safely is 200 kg

b. The mission designers consider a larger lander with a mass of 480 kg. Show that the parachute required would be larger than 400 m²;

Given that;

M = 480 kg

Show that the parachute required would be larger than 400 m²

we know that;

FD = Fg = Mg = 480 kg × 3.71 m/s²

FD = 1780.8 N

Now, FD = 1/2 × CD × β × A × V², we solve for A

A = FD / 0.5 × CD × β × V²

we substitute

A = 1780.8  / 0.5 × 1.855 × 0.1 × (20)²

A = 1780.8 / 3.71

A = 480 m²

Therefore, area of the parachute required 480 m² which is larger than 400 m²

c. To test the lander before launching it to Mars, it is tested on Earth where g = 9.8 m/s^2 and the atmospheric density is 1.0 kg m-3. How big should the parachute be for the terminal speed to be 20 m/s, if the mass of the lander is 480 kg?

Given that;

g = 9.8 m/s²,

β" = 1 kg/m³

v" = 20 m/s

M" = 480 kg

we know that;

FD = Fg = M"g

FD = 480 kg × 9.8 m/s² = 4704 N

from the expression; FD = 1/2 × CD × β × A × V²

A = FD / 0.5 × CD × β" × V"²

we substitute

A = 4704 / 0.5 × 1.855 × 1 × (20)²

A = 4704 / 371

A = 12.68 m²

Therefore area of the parachute should be 12.68 m²

3 0
3 years ago
The photon energies used in different types of medical x-ray imaging vary widely, depending upon the application. Single dental
pav-90 [236]

A) 5.0\cdot 10^{-11} m

The energy of an x-ray photon used for single dental x-rays is

E=25 keV = 25,000 eV \cdot (1.6\cdot 10^{-19} J/eV)=4\cdot 10^{-15} J

The energy of a photon is related to its wavelength by the equation

E=\frac{hc}{\lambda}

where

h=6.63\cdot 10^{-34}Js is the Planck constant

c=3\cdot 10^8 m/s is the speed of light

\lambda is the wavelength

Re-arranging the equation for the wavelength, we find

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{4\cdot 10^{-15}J}=5.0\cdot 10^{-11} m

B) 2.0\cdot 10^{-11} m

The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is

E=2.5 \cdot (4\cdot 10^{-15}J)=1\cdot 10^{-14} J

And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{1\cdot 10^{-14}J}=2.0\cdot 10^{-11} m

4 0
3 years ago
Other questions:
  • An airplane flies 33 m/s due east while experiencing a tailwind of unknown velocity due northThe resultant velocity is determine
    9·1 answer
  • Jerome places a bag of flour on a scale. The scale shows that the bag has a weight of 17 N. Which is the reaction force of the b
    10·1 answer
  • Explain what happens to particles in diffusion. What causes diffusion?
    6·2 answers
  • The pressure at the button of a glass filled with water
    9·1 answer
  • A sophomore with nothing better to do adds heat to a mass 0.300 kg of ice at 0.0 âc until it is all melted.
    15·1 answer
  • Find the change in internal energy, AU, if Q = 2.5 Joules and W = -30.5<br> Joules. *
    7·1 answer
  • A sample of gas has an initial volume of 23.6 l at a pressure of 1.52 atm . if the sample is compressed to a volume of 10.5 l: ,
    11·1 answer
  • A ground-fault circuit interrupter is a (an) _____. A)wire that provides an easier path for a current to take if a short circuit
    8·2 answers
  • UPVOTE FOR EVERY ANSWER!
    11·1 answer
  • If a 4kg Bird is pushed by the window with a force of 60 N how fast is the bird accelerate?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!