Equations of the vertical launch:
Vf = Vo - gt
y = yo + Vo*t - gt^2 / 2
Here yo = 35.0m
Vo is unknown
y final = 0
t = 4.00 s
and I will approximate g to 10m/s^2
=> 0 = 35.0 + Vo * 4 - 5 * (4.00)^2 => Vo = [-35 + 5*16] / 4 = - 45 / 4 = -11.25 m/s
The negative sign is due to the fact that the initial velocity is upwards and we assumed that the direction downwards was positive when used g = 10m/s^2.
Answer: 11.25 m/s
Both options 5 and 6
Explanation:
Let us consider option 5,
In option 5 body is moving up with initial velocity lower than that of final velocity which gets accelerated. Therefore the acceleration is positive in this case.
Let us consider option 6,
In option 6 body is moving down with initial velocity lower than that of final velocity which gets accelerated. Therefore the acceleration is positive in this case.
Assume that the small-massed particle is and the heavier mass particle is .
Now, by momentum conservation and energy conservation:
Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.
So now, we see that and . So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!
C. Maintain correct Posture
"No heat will flow between object A and object B" is the one among the following choices given in the question that describes how heat will <span>flow between object A and object B. The correct option among all the options that are given in the question is the second option or option "B". I hope it helps you.</span>