Answer:
17,890 J
Explanation:
The amount of heat released by a gaseous substance when it condenses is given by the formula

where
n is the number of moles of the substance
is the latent heat of vaporization
The formula can be applied if the substance is at its vaporization temperature.
In this problem, we have:
n = 0.440 mol is the number of moles of steam
is the latent heat of vaporization of water
And the steam is already at 100C, so we can apply the formula:

Noble gases are the least<span> reactive </span>elements<span> in the periodic table because they have a full valence shell. Examples are, Argon, Neon, Xenon, and Helium</span>
they all have one thing in common and that its all made up of atoms. When these components are active it creates energy
The answer for the following question is explained below.
Therefore the total number of orbitals are " 9 ".
Explanation:
Orbital:
An orbital is a mathematical function that describes the wave-like behavior of an electron,electron pair,or the nucleons.
The total number of orbitals present in the 3rd energy level is 9.
Here,
A 3 s subshell has only one orbital.
A 3 p subshell has three orbitals.
A 3 d subshell has five orbitals.
Therefore the total number of orbitals is:
3 s = 1 orbital
3 p = 3 orbitals
3 d = 5 orbitals
total orbitals in 3rd energy level is = 1 + 3 + 5 =9
Therefore the total number of orbitals are " 9 ".