Answer:
um d. but I am guessing this ans
Answer:
You are asked to design a cylindrical steel rod 50.0 cm long, with a circular cross section, that will conduct 170.0 J/s from a furnace at 350.0 ∘C to a container of boiling water under 1 atmosphere.
Explanation:
Given Values:
L = 50 cm = 0.5 m
H = 170 j/s
To find the diameter of the rod, we have to find the area of the rod using the following formula.
Here Tc = 100.0° C
k = 50.2
H = k × A × ![\frac{[T_{H -}T_{C} ] }{L}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BT_%7BH%20-%7DT_%7BC%7D%20%5D%20%7D%7BL%7D)
Solving for A
A = ![\frac{H * L }{k * [ T_{H}- T_{C} ] }](https://tex.z-dn.net/?f=%5Cfrac%7BH%20%2A%20L%20%7D%7Bk%20%2A%20%5B%20T_%7BH%7D-%20T_%7BC%7D%20%5D%20%7D)
A = ![\frac{170 * 0.5}{50.2 * [ 350 - 100 ]}](https://tex.z-dn.net/?f=%5Cfrac%7B170%20%2A%200.5%7D%7B50.2%20%2A%20%5B%20350%20-%20100%20%5D%7D)
A =
= 6.77 ×
m²
Now Area of cylinder is :
A =
d²
solving for d:
d = 
d = 9.28 cm
Answer:
no change in speed, therefore the body cannot be accelerated. a=0
Explanation:
When a person is accelerating his speed must change, if the speed is in the same direction as the acceleration the speed increases and if the acceleration is in the opposite direction to the speed it decreases.
In this case there is no change in speed, therefore the body cannot be accelerated.
Answer:
The mass of the other worker is 45 kg
Explanation:
The given parameters are;
The gravitational potential energy of one construction worker = The gravitational potential energy of the other construction worker
The mass of the lighter construction worker, m₁ = 90 kg
The height level of the lighter construction worker's location = h₁
The height level of the other construction worker's location = h₂ = 2·h₁
The gravitational potential energy, P.E., is given as follows;
P.E. = m·g·h
Where;
m = The mass of the object at height
g = The acceleration due to gravity
h = The height at which is located
Let P.E.₁ represent the gravitational potential energy of one construction worker and let P.E.₂ represent the gravitational potential energy of the other construction worker
We have;
P.E.₁ = P.E.₂
Therefore;
m₁·g·h₁ = m₂·g·h₂
h₂ = 2·h₁
We have;
m₁·g·h₁ = m₂·g·2·h₁
m₁ = 2·m₂
90 kg = 2 × m₂
m₂ = (90 kg)/2 = 45 kg
The mass of the other construction worker is 45 kg.
This is a Physics question where we need to figure out how many meters Cam can run per second. To figure this out we divide the distance by the change in time.
40/5.79 = 6.9 meters per second approximately.