Answer:
Explanation:
Alka Seltzer tablet contains 325 mg of aspirin (acetylsalicylic acid), 1000 mg of citric acid, and 1916 mg of sodium bicarbonate. The acids originally contained in a tablet give only 17.4 mmol of H+, which is not enough to neutralize all of the sodium bicar- bonate (22.8 mmol).
By adding together the number of protons and neutrons and multiplying by 1 amu, you can calculate the mass of the atom.
Answer is: an instant ice pack becoming cold, splitting a gas molecule and baking bread.
<span>Endothermic reaction
is chemical reaction that absorbs more energy than it releases.
</span>In ice pack, <span>reaction absorbs heat from the surroundings (endothermic reaction), lowering the surrounding temperature.
For splitting molecule and baking bread we must add energy to break bonds between atoms.</span>
Answer:
Ka = 6.02x10⁻⁶
Explanation:
The equilibrium that takes place is:
We <u>calculate [H⁺] from the pH</u>:
- [H⁺] =

Keep in mind that [H⁺]=[A⁻].
As for [HA], we know the acid is 0.66% dissociated, in other words:
We <u>calculate [HA]</u>:
Finally we <u>calculate the Ka</u>:
- Ka =
= 6.02x10⁻⁶
Answer: -
3.151 M
Explanation: -
Let the volume of the solution be 1000 mL.
At 25.0 °C, Density = 1.260 g/ mL
Mass of the solution = Density x volume
= 1.260 g / mL x 1000 mL
= 1260 g
At 25.0 °C, the molarity = 3.179 M
Number of moles present per 1000 mL = 3.179 mol
Strength of the solution in g / mol
= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)
Now at 50.0 °C
The density is 1.249 g/ mL
Mass of the solution = density x volume = 1.249 g / mL x 1000 mL
= 1249 g.
Number of moles present in 1249 g = Mass of the solution / Strength in g /mol
= 
= 3.151 moles.
So 3.151 moles is present in 1000 mL at 50.0 °C
Molarity at 50.0 °C = 3.151 M