Answer:
1. The length is 8.35m
2. The period on the moon is 14.05 secs
Explanation:
1. Data obtained from the question. This includes the following:
Period (T) = 5.8 secs
Acceleration due to gravity (g) = 9.8 m/s2
Length (L) =...?
The length can be obtained by using the formula given below:
T = 2π√(L/g)
5.8 = 2π√(L/9.8)
Take the square of both side
(5.8)^2 = 4π^2 x L/ 9.8
Cross multiply
4π^2 x L = (5.8)^2 x 9.8
Divide both side by 4π^2
L = (5.8)^2 x 9.8 / 4π^2
L= 8.35 m
2. Data obtained from the question. This includes the following:
Acceleration due to gravity (g) = 1.67 m/s2
Length (L) = 8.35m (the length remains the same)
Period (T) =?
The period can be obtained as follow:
T = 2π√(L/g)
T = 2π√(8.35/1.67)
T = 14.05 secs
Therefore, the period on the moon is 14.05 secs
The charge present determines a force to be attractive or repulsive.
The charges acquired by two bodies determines the Force as Attractive Or Repulsive.
Electric Force applied due to Electrical charges is same in magnitude but opposite in direction. This corresponds this phenomenon equivalent to the Newton's Third Law.
Examples of the experiments and observations:
- On combing hair through a comb and then keeping it close to small pieces of paper shows attraction of paper pieces towards the comb.
This occurs due to the Electric charges present in the comb that induces charge in paper pieces leading to their attraction.
- In both Gravitational Force and Coulomb force, the force remains inversely proportional to the square of the distance following the Inverse Square Law being the Central Force system. This only differs by the fact that in Gravitational Force, masses are used and in Coulomb force, charges are used.
The more the distance between the charges, the less is the Electric Force.
The lesser the distance between the charges, the more is the Electric Force.
If both the objects are charged the same i.e. either positive or negative then the Force is Repulsive and if the charges are Oppositely charged then the force is attractive.
Hence, the charge present determines a force to be attractive or repulsive.
Learn more about Coulomb Force here, brainly.com/question/15451944
#SPJ4
Answer:
Solving for time :
(There are 4 formulas from linear motion. These formulas are very helpful as it allows us to prevent complicated calculations. Choose among the four that has : 1. The most constants known
2. The unknown constant that we want to solve)
s = (1/2)(u+v)t <--- one of the formulas
from linear motion
s (distance) = 0.05m
u (initial velocity) = 100m/s
v (final velocity) = 0 m/s (it stops)
t (time taken for change in velocity) = to be found
0.05 = (1/2)(100+0)t
t = 0.001 seconds
Solving for the resistant force :
Since the bullet hits the bag with an impulsive force and stops, the force that stops the bullet is the resistant force.
When the bullet stops :
F net = 0
F r = F imp
F r = (mu -mv)/t
F r = (0.01x100-0.01x0)/0.001
F r = 1/0.001
F r = 1000N
Answer:
x = - 1.4
Explanation:
-5=10x+2-5x (subtract 5x from both sides)
-5=5x+2 (simplify)
-5-2=5x (subtract 2 from both sides)
-7=5x (simplify)
x=-7/5 (divide both sides by 5)
x=-1.4 (simplify)
i would really appreciate getting a brainliest. anyways i hope this helped and have a great rest of your day/night!! :)
Answer:
8 time increase in K.E.
Explanation:
Consider Mass of truck = m kg and speed = v m/s then
K.E. = 1/2 ×mv²
If mass and speed both are doubled i.e let m₀ = 2m and v₀ = 2v then
(K.E.)₀ = 1/2 ×2m(2v)²
(K.E.)₀ = 8 (1/2 × mv²) = 8 × K.E.