Na + NaNO3 = Na2O + N2
4 Na + 2 NaNO3 = 6 Na2O + N2
6 Na on each side
2 N on each side
6 O on each side
Chemical properties of an atom are based upon the arrangement of valence electrons (electrons which can be gained, lost, or shared).
Given:
Concentration of Fluoride ions = 0.100 M
Concentration of Hydrogen Fluoride = 0.126 M
Asked: Concentration of fluoride ions after the addition of 5ml of 0.0100 M HCl to 25 mL of the solution
Assume: 50:50 ratio of fluoride ions and HF
12.5ml*0.1mol/L *1L/1000mL + 12.5*0.126mol/L * 1L/1000mL = 2.825x10^-3 moles F-
5ml * 0.01 mol/L *1L/1000mL = 5x10^-5 moles
Assume: Volume additive
Final concentration = 2.825x10^-3 + 5x10^-5 moles/ 30 ml * 1000ml/L =0.0958 M
<span />
The given solution of Mn²⁺ is 0.60 mg/mL.
Hence mass of Mn²⁺ in 5 mL of solution = 0.60 mg/mL x 5 mL = 3 mg
Molar mass of Mn = 54.9 g/mol
Hence, moles of Mn²⁺ = 3 x 10⁻³ g / 54.9 g/mol = 5.46 x 10⁻⁵ mol
The balanced equation for the reaction is,
2Mn²⁺ + 5KIO₄ + 3H₂O → 2MnO₄⁻ + 5KIO₃ + 6H⁺
The stoichiometric ratio between Mn²⁺ and KIO₄ is 2 : 5
Hence, moles of KIO₄ reacted = 5.46 x 10⁻⁵ mol x (5 / 2)
= 13.65 x 10⁻⁵ mol
Molar mass of KIO₄ = 230 g/mol
Hence needed mass of KIO₄ = 13.65 x 10⁻⁵ mol x 230 g/mol
= 0.031395 g
= 31.395 mg
≈ 31.4 mg
<span>Evaporation from the oceans is the primary mechanism supporting the surface-to-atmosphere portion of the water cycle</span>