1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
3 years ago
6

How much force is required to move a sled 5 meters if a person uses 60 j of work? 300N 12N 65N 30N

Physics
1 answer:
maksim [4K]3 years ago
4 0
The answer is b 12N because
We know that<span>
W = F × d × c o s(θ)</span>
assuming theta=0 we then solve and have<span>
F=<span>W/d</span></span>
substitute known values to get:<span><span>
F=<span><span>60J/</span><span>5m</span></span>=12N</span></span>
You might be interested in
A robot arm moves so that P travels in a circle about point B, which is not moving. Knowing that P starts from rest, and its spe
algol13

Answer

Acceleration=>10.20mm/s

Explanation

Below in image

4 0
3 years ago
A thick, spherical shell made of solid metal has an inner radius a = 0.18 m and an outer radius b = 0.46 m, and is initially unc
KonstantinChe [14]

(a) E(r) = \frac{q}{4\pi \epsilon_0 r^2}

We can solve the different part of the problem by using Gauss theorem.

Considering a Gaussian spherical surface with radius r<a (inside the shell), we can write:

E(r) \cdot 4\pi r^2 = \frac{q}{\epsilon_0}

where q is the charge contained in the spherical surface, so

q=5.00 C

Solving for E(r), we find the expression of the field for r<a:

E(r) = \frac{q}{4\pi \epsilon_0 r^2}

(b) 0

The electric field strength in the region a < r < b is zero. This is due to the fact that the charge +q placed at the center of the shell induces an opposite charge -q on the inner surface of the shell (r=a), while the outer surface of the shell (r=b) will acquire a net charge of +q.

So, if we use Gauss theorem for the region  a < r < b, we get

E(r) \cdot 4\pi r^2 = \frac{q'}{\epsilon_0}

however, the charge q' contained in the Gaussian sphere of radius r is now the sum of the charge at the centre (+q) and the charge induced on the inner surface of the shell (-q), so

q' = + q - q = 0

And so we find

E(r) = 0

(c) E(r) = \frac{q}{4\pi \epsilon_0 r^2}

We can use again Gauss theorem:

E(r) \cdot 4\pi r^2 = \frac{q'}{\epsilon_0} (1)

where this time r > b (outside the shell), so the gaussian surface this time contained:

- the charge +q at the centre

- the inner surface, with a charge of -q

- the outer surface, with a charge of +q

So the net charge is

q' = +q -q +q = +q

And so solving (1) we find

E(r) = \frac{q}{4\pi \epsilon_0 r^2}

which is identical to the expression of the field inside the shell.

(d) -12.3 C/m^2

We said that at r = a, a charge of -q is induced. The induced charge density will be

\sigma_a = \frac{-q}{4\pi a^2}

where 4 \pi a^2 is the area of the inner surface of the shell. Substituting

q = 5.00 C

a = 0.18 m

We find the induced charge density:

\sigma_a = \frac{-5.00 C}{4\pi (0.18 m)^2}=-12.3 C/m^2

(e) -1.9 C/m^2

We said that at r = b, a charge of +q is induced. The induced charge density will be

\sigma_b = \frac{+q}{4\pi b^2}

where 4 \pi b^2 is the area of the outer surface of the shell. Substituting

q = 5.00 C

b = 0.46 m

We find the induced charge density:

\sigma_b = \frac{+5.00 C}{4\pi (0.46 m)^2}=-1.9 C/m^2

3 0
3 years ago
determine the weight in newtons of a woman whose weight in pounds is 125. also, find her mass in slugs and in kilograms. DEtermi
xxMikexx [17]

Answer:

124 just subtract only one

Explanation:

4 0
3 years ago
WILL GIVE YOU BRAINLIST IF YOU ANSWER
kvv77 [185]

Answer:

thanks

Explanation:

willow ptarmigan

5 0
3 years ago
Read 2 more answers
A high-temperature, gas-cooled nuclear reactor consists of a composite, cylindrical wall for which a thorium fuel element (kth =
WARRIOR [948]

Answer:

a) T_1 = 938 K , T_2 = 931 K

b) To prevent softening of the materials, which would occur below their  melting points, the reactor should not be operated much above:

                                      q = 3*10^8 W/m^3

Explanation:

Given:

- See the attachment for the figure for this question.

- Melting point of Thorium T_th = 2000 K

- Melting point of Thorium T_g = 2300 K

Find:

a) If the thermal energy is uniformly generated in the fuel element at a rate q = 10^8 W/m^3 then what are the temperatures T_1 and T_2 at the inner and outer surfaces, respectively, of the fuel element?

b) Compute and plot the temperature distribution in the composite wall for selected values of q.  What is the maximum allowable value of q.

Solution:

part a)

- The outer surface temperature of the fuel, T_2, may be determined from the rate equation:

                                 q*A_th = T_2 - T_inf / R'_total

Where,

           A_th: Area of the thorium section

           T_inf: The temperature of coolant = 600 K

           R'_total: The resistance per unit length.

- Calculate the resistance per unit length R' from thorium surface to coolant:

           R'_total = Ln(r_3/r_2) / 2*pi*k_g + 1 / 2*pi*r_3*h

Plug in values:

           R'_total = Ln(14/11) / 2*pi*3 + 1 / 2*pi*0.014*2000

           R'_total = 0.0185 mK / W

- And the heat rate per unit length may be determined by applying an energy balance to a control surface  about the fuel element. Since the interior surface of the element is essentially adiabatic, it follows that:

           q' = q*A_th = q*pi*(r_2^2 - r_1^2)

           q' = 10^8*pi*(0.011^2 - 0.008^2) = 17,907 W / m

Hence,

           T_2 = q' * R'_total + T_inf

           T_2 = 17,907*0.0185 + 600

          T_2 = 931 K

- With zero heat flux at the inner surface of the fuel element, We will apply the derived results for boundary conditions as follows:

 T_1 = T_2 + (q*r_2^2/4*k_th)*( 1 - (r_1/r_2)^2) - (q*r_1^2/2*k_th)*Ln(r_2/r_1)

Plug values in:

 T_1 = 931+(10^8*0.011^2/4*57)*( 1 - (.8/1.1)^2) - (10^8*0.008^2/2*57)*Ln(1.1/.8)

 T_1 = 931 + 25 - 18 = 938 K

part b)

The temperature distributions may be obtained by using the IHT model for one-dimensional, steady state conduction in a hollow tube. For the fuel element (q > 0),  an adiabatic surface condition is  prescribed at r_1 while heat transfer from the outer surface at r_2 to the coolant is governed by the thermal  resistance:

                              R"_total = 2*pi*r_2*R'_total

                              R"_total = 2*pi*0.011*0.0185 = 0.00128 m^2K/W

- For the graphite ( q = 0 ), the value of T_2 obtained from the foregoing solution is prescribed as an inner boundary condition at r_2, while a convection condition is prescribed at the outer surface (r_3).

- For 5*10^8 < q and q > 5*10^8, the distributions are given in attachment.

The graphs obtained:

- The comparatively large value of k_t yields small temperature variations across the fuel element,  while the small value of k_g results in large temperature variations across the graphite.

Operation  at q = 5*10^8 W/^3  is clearly unacceptable, since the melting points of thorium and graphite are exceeded  and approached, respectively. To prevent softening of the materials, which would occur below their  melting points, the reactor should not be operated much above:

                                      q = 3*10^8 W/m^3

6 0
3 years ago
Other questions:
  • A puck rests on a horizontal frictionless plane. A string is wound around the puck and pulled on with constant force. What fract
    15·1 answer
  • When car tires are on hot pavement for too long, the pressure inside will ___________ and the volume within the tire will ______
    9·1 answer
  • You are driving along a highway at 35.0 m/s when you hear the siren of a police car approaching you from behind at constant spee
    15·1 answer
  • The moon is in a nearly circular orbit of radius r = 384000000 meters
    5·1 answer
  • Which of the following situations is an example of change in momentum? a. a tennis ball hit into a net b. a helium ballon rising
    6·1 answer
  • The A block, with negligible dimensions and weight P, is supported by the coordinate point (1.1/2) of the parabolic fixed ground
    11·1 answer
  • What is the period, T, of a wave produced by a tuning that makes 400 vibrations in one second? Group of answer choices
    9·1 answer
  • How many electrons does it take to make up 4.33 C of charge?
    12·1 answer
  • A body of mass 5.0 kg is suspended by a spring which stretches 10 cm when the mass is attached. It is then displaced downward an
    9·1 answer
  • HELP ME NO BOTS PLEASE!!!!!!!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!