Answer:The volume increases by 11%
Explanation:
When the pressure is decreased, the volume must definitely increase, to maintain the same pressure, the temperature must then also be increased as we see in the question. The volume was increased just as the pressure decreased and the temperature had to be increased to maintain a constant pressure. We have applied the general gas equation in solving the problem.
Paint changes color to the physical eye.
1.64 L of sulfur dioxide (SO₂)
Explanation:
We have the following chemical reaction:
S (s) + O₂ (g) → SO₂ (g)
First we calculate the number of moles of sulfur (S):
number of moles = mass / molar weight
number of moles of sulfur = 2.35 / 32 = 0.0734 moles
Looking at the chemical reaction we see that 1 moles of sulfur (S) produces 1 moles of sulfur dioxide (SO₂), so 0.0734 moles of sulfur will produce 0.0734 moles of sulfur dioxide (SO₂).
To calculate the volume of sulfur dioxide (SO₂), assuming that the sulfur dioxide is behaving as an ideal gas and the we determine the gas volume under standard temperature and pressure conditions, we use the following formula:
number of moles = volume / 22.4 (L/mole)
volume = number of moles × 22.4
volume of SO₂ = 0.0734 × 22.4 = 1.64 L
Learn more about:
molar volume
brainly.com/question/11160940
brainly.com/question/506048
#learnwithBrainly
PS: I appreciate that you took the time and effort to write the chemical equation in a readable way. This makes the question to be very rare :D
Answer:
The heat required to change 25.0 g of water from solid ice to liquid water at 0°C is 8350 J
Explanation:
The parameters given are
The temperature of the solid water = 0°C
The heat of fusion, = 334 J/g
The heat of vaporization, = 2260 J/g
Mass of the solid water = 25.0 g
We note that the heat required to change a solid to a liquid is the heat of fusion, from which we have the formula for heat fusion is given as follows;
ΔH = m ×
Therefore, we have;
ΔH = 25 g × 334 J/g = 8350 J
Which gives the heat required to change 25.0 g of water from solid ice to liquid water at 0°C as 8350 J.
Explanation:
When a chlorine atom forms an ion, it gains electrons, making it negative. A neutral chlorine will become a chlorine with a -1 charge. When it gains an electron, the radius increases.
When a sodium atom forms an ion, it loses electrons, making it positive. A neutral sodium will become a sodium with a +1 charge. When it loses an electron, the radius decreases.