1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
2 years ago
11

A foot-pound is described as the amount of twisting force applied to a shaft by a perpendicular

Engineering
1 answer:
Orlov [11]2 years ago
7 0

Answer:

C. 1 ft long with a weight of 1 lb

You might be interested in
A four-cylinder, four-stroke internal combustion engine operates at 2800 RPM. The processes within each cylinder are modeled as
Ulleksa [173]

Answer:

1) 287760.4 Hp

2) 18410899.5 kPa

Explanation:

The parameters given are;

p₁ = 14.7 lbf/in² = 101325.9 Pa

v₁ = 0.0196 ft³ = 0.00055501 m³

T₁ = 80°F = 299.8167 K

k = 1.4

Assumptions;

1) Air standard conditions are appropriate

2) There are negligible potential and kinetic energy changes

3) The air behaves as an ideal gas and has constant specific heat capacities of temperature and pressure

1) Process 1 to 2

Isentropic compression

T₂/T₁ = (v₁/v₂)^(1.4 - 1) = 10^0.4

p₂/p₁ = (v₁/v₂)^(1.4)

p₂ = p₁×10^0.4 =  101325.9*10^0.4 = 254519.153 Pa

T₂ = 299.8167*10^0.4 = 753.106 K

p₃ = 1080 lbf/in² = 7,446,338 Pa

Stage 2 to 3 is a constant volume process

p₃/T₃ = p₂/T₂

7,446,338/T₃ =   254519.153/753.106

T₃ = 7,446,338/(254519.153/753.106) = 22033.24 K

T₃/T₄ = (v₁/v₂)^(1.4 - 1) = 10^0.4

T₄ = 22033.24/(10^0.4) = 8771.59 K

The heat supplied, Q₁ = cv(T₃ - T₂) = 0.718*(22033.24 -753.106) = 15279.14 kJ

The heat rejected = cv(T₄ - T₁) = 0.718*(8771.59 - 299.8167) = 6082.73 kJ

W(net) = The heat supplied - The heat rejected = (15279.14 - 6082.73) = 9196.41 kJ

The power = W(net) × RPM/2*1/60 = 9196.41 * 2800/2*1/60 = 214582.9 kW

The power by the engine = 214582.9 kW = 287760.4 Hp

2) The mean effective pressure, MEP  = W(net)/(v₁ - v₂)

v₁ = 0.00055501 m³

v₁/v₂ = 10

v₂ = v₁/10 = 0.00055501/10 = 0.000055501

MEP  = 9196.41/(0.00055501 -  0.000055501) = 18410899.5 kPa

4 0
3 years ago
The four strokes in a four stroke cycle engine in proper order.
Morgarella [4.7K]

Answer:

A four-stroke cycle engine is an internal combustion engine that utilizes four distinct piston strokes (intake, compression, power, and exhaust) to complete one operating cycle. The piston make two complete passes in the cylinder to complete one operating cycle.

Explanation:

6 0
3 years ago
Select the correct text in the passage.
sineoko [7]
It is habahi Yw with yuuuuuy I am a little more confused about
5 0
3 years ago
Read 2 more answers
What is the activation energy (Q) for a vacancy formation if 10 moles of a metal have 2.3 X 10^13 vacancies at 425°C?
Yakvenalex [24]

Answer:

Activation\ Energy=2.5\times 10^{-19}\ J

Explanation:

Using the expression shown below as:

N_v=N\times e^{-\frac {Q_v}{k\times T}

Where,

N_v is the number of vacancies

N is the number of defective sites

k is Boltzmann's constant = 1.38\times 10^{-23}\ J/K

{Q_v} is the activation energy

T is the temperature

Given that:

N_v=2.3\times 10^{13}

N = 10 moles

1 mole = 6.023\times 10^{23}

So,

N = 10\times 6.023\times 10^{23}=6.023\times 10^{24}

Temperature = 425°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (425 + 273.15) K = 698.15 K  

T = 698.15 K

Applying the values as:

2.3\times 10^{13}=6.023\times 10^{24}\times e^{-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

Q_v=2.5\times 10^{-19}\ J

4 0
3 years ago
Here, we want to become proficient at changing units so that we can perform calculations as needed. The basic heat transfer equa
netineya [11]

Answer:

9500 kJ; 9000 Btu

Explanation:

Data:

m = 100 lb

T₁ = 25 °C

T₂ = 75 °C

Calculations:

1. Energy in kilojoules

ΔT = 75 °C - 25 °C = 50 °C  = 50 K

m = \text{100 lb} \times \dfrac{\text{1 kg}}{\text{2.205 lb}} \times \dfrac{\text{1000 g}}{\text{1 kg}}= 4.54 \times 10^{4}\text{ g}\\\\\begin{array}{rcl}q & = & mC_{\text{p}}\Delta T\\& = & 4.54 \times 10^{4}\text{ g} \times 4.18 \text{ J$\cdot$K$^{-1}$g$^{-1}$} \times 50 \text{ K}\\ & = & 9.5 \times 10^{6}\text{ J}\\ & = & \textbf{9500 kJ}\\\end{array}

2. Energy in British thermal units

\text{Energy} = \text{9500 kJ} \times \dfrac{\text{1 Btu}}{\text{1.055 kJ}} = \text{9000 Btu}

7 0
3 years ago
Other questions:
  • OSHA does not approve individual states to have their own safety and health program.
    15·2 answers
  • A lake with constant volume 1.1 x 10^6 m^3 is fed by a stream with a non-conservative pollutant of 2.3 mg/L and flow rate 35 m^3
    14·1 answer
  • 1. How does manufacturing help strengthen<br> the economy?
    15·1 answer
  • A piston–cylinder assembly contains air, initially at 2 bar, 300 K, and a volume of 2 m3. The air undergoes a process to a state
    12·1 answer
  • Which definition best fits the idea of electrical resistance in a wire? A. the decrease in current flow due to electrons collidi
    12·1 answer
  • What is wrong with the following code?<br> 6<br> print (what is your name?)
    9·2 answers
  • Based on your reading of the following, how does a triple save a fire department in time?
    5·1 answer
  • Consider a building whose annual air-conditioning load is estimated to be 40,000 kWh in an area where the unit cost of electrici
    8·1 answer
  • A rectangular bar has a edge crack at the bottom and is subjected to a pure bending moment. The crack length is a = 1 mm. The he
    14·1 answer
  • Pls answer and I will give a like!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!