Answer:
The cost of electricity for 100 W power bulb = $ 32.85
Cost of electricity for 0.025 W fluorescent bulb = $ 8.2125
Explanation:
Cost of electricity = $ 0.18 per KW-H
Time = 5 hour per day
Bulb power = 100 W = 0.1 KW
Fluorescent bulb power = 25 W = 0.025 KW
(a) Cost of electricity for 100 W power bulb
0.1 × 5 × 365 × 0.18 = $ 32.85
(b) Cost of electricity for 0.025 W fluorescent bulb
0.025 × 5 × 365 × 0.18 = $ 8.2125
Therefore the cost of electricity for 100 W power bulb = $ 32.85
Cost of electricity for 0.025 W fluorescent bulb = $ 8.2125
Answer:
The equilibrium will be shifted to lift with the formation of a brown gelatinous precipitate of Fe(OH)₃.
Explanation:
- Le Chatelier's principle states that <em>"when any system at equilibrium for is subjected to change in concentration, temperature, volume, or pressure, then the system readjusts itself to counteract the effect of the applied change and a new equilibrium is established that is different from the old equilibrium"</em>.
- The addition of NaOH will result in the formation of Fe(OH)₃ precipitate which has a brown gelatinous precipitate.
- The formation of this precipitate cause removal and decrease of Fe³⁺ ions.
- According to Le Chatelier's principle, the system will be shifted to lift to increase Fe³⁺ concentration and reduce the stress of Fe³⁺ removal and readjust the equilibrium again. So, the [Fe(SCN)²⁺] decreases.
- Increasing [Fe³⁺] will produce a yellow color solution that contains a brown gelatinous precipitate of Fe(OH)₃.
Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
2 valence electrons
Explanation:
Most transition metals have 2 valence electrons. Valence electrons are the sum total of all the electrons in the highest energy level (principal quantum number n). Most transition metals have an electron configuration that is ns2(n−1)d , so those ns2 electrons are the valence electrons.
Answer:
It takes 86 days take to cover half of the lake
Explanation:
In the day #1, the amount of the algae is X,
In the day #2 is 2X
In the day #3 is 2*2*X = X*2²
...
In the day #n the amount of the algae is X*2^(n-1)
Assuming X = 1m³. In the day 87, the area infected was:
1m³*2^(87-1)
7.74x10²⁵m³ is the total area of the lake
the half of this amount is 3.87x10²⁵m³
The time transcurred is:
3.87x10²⁵m³ = 1m³*2^(n-1)
Multiplying for 5 in each side:
ln (3.87x10²⁵) = ln (2^(n-1))
58.9175 = n-1 * 0.6931
85 = n-1
86 = n
<h3>It takes 86 days take to cover half of the lake</h3>