Oxidation
iron+oxygen happened
Complete Question
A student is extracting caffeine from water with dichloromethane. The K value is 4.6. If the student starts with a total of 40 mg of caffeine in 2 mL of water and extracts once with 6 mL of dichloromethane
The experiment above is repeated, but instead of extracting once with 6 mL the extraction is done three times with 2 mL of dichloromethane each time. How much caffeine will be in each dichloromethane extract?
Answer:
The mass of caffeine extracted is 
Explanation:
From the question above we are told that
The K value is 
The mass of the caffeine is 
The volume of water is 
The volume of caffeine is 
The number of times the extraction was done is n = 3
Generally the mass of caffeine that will be extracted is
![P = m * [\frac{V}{K * v_c + V} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%20m%20%20%2A%20%20%5B%5Cfrac%7BV%7D%7BK%20%2A%20%20v_c%20%2B%20V%7D%20%5D%5E3)
substituting values
![P = 40 * [\frac{2}{4.6 * 2 + 2} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%2040%20%20%20%2A%20%20%5B%5Cfrac%7B2%7D%7B4.6%20%2A%20%202%20%2B%202%7D%20%5D%5E3)

Explanation:
Each element in the periodic table has different but fixed number of the protons in nucleus of it's atom, which is known as the atomic number.
Transmutation of one chemical element into the another involves the changing of the atomic number. Such nuclear reaction requires millions of the times more energy as compared to normal chemical reactions. Thus, the dream of the alchemist of transmuting the lead into the gold was never achievable chemically .
Conversion of lead to gold in today's world:
This conversion is indeed possible. The requirements are a particle accelerator, tremendous supply of the energy. Nuclear scientists at the Lawrence Berkeley National Laboratory located in California, more than 30 years ago, succeeded in producing very minute amounts of the gold from the bismuth. Bismuth is a metallic element which is adjacent to the lead on periodic table. Same process would work for the lead but isolating gold at end of reaction would prove much more difficult because lead is available in many isotopes. The homogeneous nature of the element means that it is easier to separate the gold from the bismuth as compared to separate the gold from the lead which has four isotopic identities which all are stable.
Answer:
8.13 ×10²³ atoms
Explanation:
Given data:
Mass of magnesium = 32.45 g
Number of atoms = ?
Solution:
Number of moles of Mg:
Number of moles = mass/molar mass
Number of moles = 32.45 g/ 24 g/mol
Number of moles = 1.35 mol
Number of atoms:
1 mole contain 6.022×10²³ atoms
1.35 mol × 6.022×10²³ atoms/ 1mol
8.13 ×10²³ atoms
Igneous <span>rock ! Of course oh how i miss middle school.........</span>