To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 
The correct answer is A, 2x^3 - x^2 +3x +7
Heptane is always composed of 84.0% carbon and 16.0% hydrogen. This illustrates the "law of definite proportions".
Answer: Option C
<u>Explanation:</u>
Proust's law states that every chemical compound used to made up of element constituents with constant proportions in terms of its mass and also independent from its sources and synthesis method. In 1779, Joseph Proust gave other names to the Proust's law as, the law of composition or definite proportions or constant compositions.
This can understood from given example like: Oxygen is composed of 8/9 of the mass of any sample of pure water while the hydrogen fills up the remaining 1/9 of the mass. The basis of stoichiometry is structured with the law of multiple proportions along the law of definite proportions.
Answer:
s = 6.25 10⁻²² m
Explanation:
Polarizability is the separation of electric charges in a structure, in the case of the atom it is the result of the separation of positive charges in the nucleus and the electrons in their orbits, macroscopically it is approximated by
p = q s
s = p / q
let's calculate
s = 1 10⁻⁴⁰ / 1.6 10⁻¹⁹
s = 0.625 10⁻²¹ m
s = 6.25 10⁻²² m
We see that the result is much smaller than the size of the atom, therefore this simplistic model cannot be taken to an atomic scale.