The result is although the wire's resistivity doesn't change, its resistance does.
Considering the formula for a material's resistance:
R=pL/A
R is directly proportional to L and inversely proportional to A, as can be seen. Be aware that "rho" is a material-specific and intensive attribute (meaning this value will not change if the material is only physically altered). Remember that A = This implies that the relationship between R and the square of r is inverse. When the wire is stretched, the impacts on length are less noticeable than the effects on r. Therefore the wire's resistance increases, but its resistivity stays the same.
Learn more about resistance here:
brainly.com/question/20708652
#SPJ4
(18 gallon/tank) x (23 mile/gallon) = <em>414 mile/tank</em>
Answer:
Night vision goggles capture infrared light given off by heat
The frequency of the radio station is

For radio waves (which are electromagnetic waves), the relationship between frequency f and wavelength

is

where c is the speed of light. Substituting the frequency of the radio station, we find the wavelength:
Answer:
wave speed= constant
frequency = increase
wavelength = decrease
Explanation:
Solution:
- The three basic parameters of a wave are speed, frequency and wavelength. These three parameters are related to each other by an expression:
v = f * λ
Where,
- v is the speed of the wave in m/s.
- f frequency of the wave in Hz.
- λ wavelength of the wave in m
- We are asked how would each of these parameter change if we move the hand up and down faster. The hand moves from a crest to trough faster than before and back again. We can see that the time between a cycle has decreased; hence, frequency f increases. Consequently, we can see that wave speed v remains constant - the medium of transfer of wave energy - remains same. Then from our relation above if we hold speed constant and increase f then the wavelength λ would have to decrease.