Answers:
<h2>The symbiotic relationship that occurs between an orchid and a tree would be classified as commensalism. Most orchids are epiphytes, which mean that that they grow on other plants. This benefits the orchids because they can grow on top of the canopy, which prevents the orchids from being walked on or eaten by ground-dwelling organisms.</h2><h3 /><h3>I HOPE TO IT'S HELP YOU:)</h3>
The molarity of the acid sample H₂SO₄ is 0.052M .
<h3>What is Molarity ?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution.
Molarity is defined as the moles of a solute per liters of a solution.
Molarity is also known as the molar concentration of a solution
Now to determine the molarity of the acid sample
V( H₂SO₄) = 24.0 mL in liters = 24.0 / 1000 = 0.024 L
M(H₂SO₄) = ?
V(NaOH) = 20.0 mL = 20.0 / 1000 = 0.02 L
M(NaOH) = 0.125 M
Number of moles NaOH :
n = M x V
n = 0.125 x 0.02
n = 0.0025 moles of NaOH
H₂SO₄(aq) + 2 NaOH(aq) = Na₂SO₄(aq) + 2 H₂O(l)
1 mole H₂SO₄ ---------- 2 mole NaOH
? mole H₂SO₄ ---------- 0.0025 moles NaOH
moles = 0.0025 * 1 / 2
= 0.00125 moles of H₂SO₄
M(H₂SO₄) = n / V
M = 0.00125 / 0.024
= 0.052 M
Therefore the molarity of the acid sample H₂SO₄ is 0.052M .
To know more about molarity
brainly.com/question/12127540
#SPJ4
Answer:
pH = 10
The solution is basic.
Explanation:
A solution contains 1 × 10⁻⁴ M OH⁻ ions. First, we will calculate the pOH.
pOH = -log [OH⁻]
pOH = -log 1 × 10⁻⁴
pOH = 4
We can find the pH of the solution using the following expression.
pH + pOH = 14.00
pH = 14.00 - pOH = 14.00 - 4 = 10
Since the pH > 7, the solution is basic.
Answer:
Kc for this equilibrium is 2.30*10⁻⁶
Explanation:
Equilibrium occurs when the rate of the forward reaction equals the rate of the reverse reaction and the concentrations of reactants and products are held constant.
Being:
aA + bB ⇔ cC + dD
the equilibrium constant Kc is defined as:
![Kc=\frac{[C]^{c}*[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%2A%5BD%5D%5E%7Bd%7D%20%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
In other words, the constant Kc is equal to the multiplication of the concentrations of the products raised to their stoichiometric coefficients by the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients. Kc is constant for a given temperature, that is to say that as the reaction temperature varies, its value varies.
In this case, being:
2 NH₃(g) ⇔ N₂(g) + 3 H₂(g)
the equilibrium constant Kc is:
![Kc=\frac{[N_{2} ]*[H_{2} ]^{3} }{[NH_{3} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BN_%7B2%7D%20%5D%2A%5BH_%7B2%7D%20%5D%5E%7B3%7D%20%20%7D%7B%5BNH_%7B3%7D%20%5D%5E%7B2%7D%20%7D)
Being:
- [N₂]= 0.0551 M
- [H₂]= 0.0183 M
- [NH₃]= 0.383 M
and replacing:

you get:
Kc= 2.30*10⁻⁶
<u><em>Kc for this equilibrium is 2.30*10⁻⁶</em></u>
45 m. If each student needs 750 mm of tubing, the teacher should order 45 m of tubing.
a) Find the <em>length in millimetres</em>
Length = 60 students x (750 mm tubing/1 student) = 45 000 mm tubing
b) Convert <em>millimetres to metres
</em>
Length = 45 000 mm tubing x (1 m tubing/1000 mm tubing) = 45 m tubing