Answer:
Specific gravity is 0.56
Explanation:
We know that
mass of water displaced by the wood is, m1( apparent mass when wood in air and lead is submerged in water) - m2(the apparent mass when wood and lead both are submerged in water)
= 0.0765 - 0.0452 = 0.0313 Kg
So the specific gravity of the wood is, = mass of wood / mass of water displaced by the wood
= 0.0175/0.0313
=0.56
Explanation:
you measure temperature in degrees celsius using a thermometer. Thermal energy is measured in joules. A larger volume of water will take longer to heat up but will store more energy than the smaller object. However, a smaller object will lose it's heat faster than a larger object. A cup of tea has less thermal energy than a swimming pool.
Answer:
Inez thinks it is important to be honest with her friends.
Byron tries to treat all people with respect.
Lydia cares about expressing her creativity.
Explanation:
Just did on Edge
Convection is the transfer of heat through a fluid
Conduction is the heat or electric current from one substance to another
Radiation is energy that radiated or transmitted
Ex: Convection- A pot of water is being boiled- the heat is being transferred to to the water
Ex2: Conduction- I have a plate filled with hot food- the heat from the food is being transferred to the plate, making the plate hot as well.
Ex3: Radiation- There is a dog by the fire place, the dog is being warmed- the heat from the fire is being transferred over to the dog
Hope this will help you with your homework :)
:<span> </span><span>The gradient of the curve 1/x at x=2 is m = -¼
We may choose any length of line to represent the direction of the slope (direction vector) at that point. We could choose a line for which x = 2 and then y would have to be -½ so that the gradient is still = -½/2 = -¼. It is simply convenient to choose a unit length for x, making y = -¼ The length of the resultant of x and y is √(1²+¼²) = √(17/16) = √(17)/4 which is a direction vector. If we had taken the direction vector to be (2, ½) then we would have a resultant direction vector of √17/2. It doesn't really matter what length the direction vector is - it's job is only to show the direction. So their choice of 1 is quite arbitrary but convenient, since it is easy to work with units – that's why we use units!
Now, we know that the magnitude of the velocity vector must be 5 and the magnitude of our direction vector at the moment is √(17)/4. We therefore need to multiply this direction vector by 20/√(17) to get 5 – just try it : √(17)/4 × 20/√(17) = 5.
We could equally well have done this with (2, ½) and would have got 2½ for lambda.</span>