The sum of angles in a regular pentagon is
180*(5 - 2) = 540°
Each internal angle is 540/5 = 108°.
Each vertex creates a line of symmetry to the midpoint of the opposite side,
as shown in the figure.
Answer: 5 lines of symmetry.
Answer:
The box should be placed at a distance of
from the pivot
Explanation:
In order to be in static equilibrium, both Torques have to be the same magnitude, so:
Replacing the formula for Torque:
where X is the distance we need to find.
Solving for X we get:

As we can see, the distance does not depend on the actual value of the mass but on the fact of one being twice as much as the other one.
Answer:
Explanation:
Based on the wave model of light, physicists predicted that increasing light amplitude would increase the kinetic energy of emitted photoelectrons, while increasing the frequency would increase measured current.
Contrary to the predictions, experiments showed that increasing the light frequency increased the kinetic energy of the photoelectrons, and increasing the light amplitude increased the current.
Based on these findings, Einstein proposed that light behaved like a stream of particles called photons with an energy of \text{E}=h\nuE=hνstart text, E, end text, equals, h, \nu.
The work function, \PhiΦ\Phi, is the minimum amount of energy required to induce photoemission of electrons from a metal surface, and the value of \PhiΦ\Phi depends on the metal.
The energy of the incident photon must be equal to the sum of the metal's work function and the photoelectron kinetic energy:
Answer:
Answer:
4, 2, 5, 3, 1
Explanation:
The neuron remains at RMP unless stimulated. The stimulus results in opening of stimulus channels, this causes depolarization. if the extent of depolarization reaches to the level of threshold, the sodium and potassium channels begin opening but potassium channels are slow to open. Hence at first sodium goes out causing further depolarization until it reaches the peak at which the potassium channels open and the sodium channels close. This causes the potassium to rush our causing repolarization i.e. return of the membrane potential to RMP but the potassium channels are slow to close and it leads to hyperpolarization (undershoot) making the membrane potential more negative due to excessive movement of potassium outside the cell. Once the potassium channels close, the leak channels and Na K pump acts to return the potential to RMP.
Explanation: