1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
2 years ago
8

In the demonstration by Cal’s teacher, the string represents the force that keeps the planet in orbit. Which statement BEST desc

ribes what would happen first if the string broke while swinging the ball during the demonstration?
A
The ball would continue orbiting.

B
The ball would immediately fall to the ground.

C
The ball would fly in a straight line away from the teacher.

D
The ball would move in a spiral getting farther away from the teacher.
Physics
1 answer:
Flauer [41]2 years ago
5 0

Answer:

yessyes

Explanation:

yes

You might be interested in
(please help ASAP!)
makkiz [27]

Answer:

It's C. Length

Explanation:

Just think of a ruler. Hope I helped! :)

8 0
2 years ago
Read 2 more answers
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
In a convex lense f=20cm, m=1,then what is u and v?​
katen-ka-za [31]

Answer:

I'm not sure if I know whatever the answer is

3 0
2 years ago
An object increases its velocity from 22 m/s to 36 m/s in 5.0 s. What is the average velocity of the object?
Luden [163]

Answer:

a=2.8\ m/s^2

Explanation:

Given that,

Initial velocity of an object, u = 22 m/s

Final velocity of an object, v = 36 m/s

Time, t = 5 s

It can be assumed to find the average acceleration of the object instead of average velocity.

The change in velocity per unit time is equal to average acceleration of an object. It can be given by :

a=\dfrac{v-u}{t}\\\\a=\dfrac{36\ m/s-22\ m/s}{5}\\\\\a=\dfrac{14}{5}\ m/s^2\\\\a=2.8\ m/s^2

So, the acceleration of the object is 2.8\ m/s^2.

7 0
3 years ago
PLEASE HELP ME WITH THIS ONE QUESTION
Kitty [74]

Answer:

Q = 282,000 J

Explanation:

Given that,

The mass of liquid water, m = 125 g

Temperature, T = 100°C

The latent heat of vaporization, Hv = 2258 J/g.

We need to find the amount of heat needed to vaporize 125 g of liquid water. We can find it as follows :

Q=mH_v\\\\Q=125\ g\times 2285\ J/g\\\\Q=282250\ J

or

Q = 282,000 J

So, the required heat is 282,000 J .

6 0
2 years ago
Other questions:
  • Explain why the brakes of a car get much hotter than the brakes of a bicycle?
    15·1 answer
  • A source emits monochromatic light of wavelength 495 nm in air. when the light passes through a liquid, its wavelength reduces t
    9·1 answer
  • An amoeba is a one-celled protist. Amoeba contain all the organelles of a typical eukaryotic animal cell. It is a heterotroph an
    10·1 answer
  • Please help<br> Quickly!!!..
    6·1 answer
  • A 0.250 kg block on a vertical spring with spring constant of 4.45 ✕ 103 N/m is pushed downward, compressing the spring 0.080 m.
    14·1 answer
  • The moon is made up mostly of _______, similar to minerals on earth
    9·1 answer
  • What is the sum of all forces acting on an object and direction
    13·1 answer
  • PLEASE ANSWER ILL GIVE YOU BRAIN!!!!
    5·1 answer
  • Which accurately completes the statement? Conduction involves the transfer of electric charge or due to the movement of particle
    14·2 answers
  • How much work must be done on a 750 kg car to slow it down from 1.0 x 10 km/h to 2<br> 50.0 km/h?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!