Answer:
Explanation:
350 N force stretches the spring by 30 cm
spring constant K = 350 / 0.30 = (350 / 0.3) N / m
To calculate work done by a spring force we proceed as follows
spring force when the spring is stretched by x = Kx
This force is variable so work done by it can be calculated by integration
Work done by it in stretching from x₁ to x₂
W = ∫ F dx
= ∫ Kx dx with limit from x₁ to x ₂
= 1/2 K ( x₂² - x₁² )
Putting the given values of x₁ = 0.50 m , x₂ = 0.8 m
Work done
= 1/2 x (350 / 0.3)x ( 0.80² - 0.50² )
= 227.50 J
Answer:
a
0.57g
b
20.52
c
28.5
Explanation:
a
The bottle weighs 80g with tablets
If the bottle alone weighs 23g, the tablets weigh 57g
100 tablets weigh 57g, 1 tablet weighs 0.57g
b
0.57g is one tablet, so to achieve 36 tablets we must multiply by 36
0.57 multiplied by 36 is 20.52
c
To find 50 tablets we can use the same method we used before or a slightly faster method
100 tablets is 57g, so all we have to do is halve to find 50
57 divided by 2 is 28.5
The tires deflated and so that means that you won’t be able to travel
Answer:
The value is 
Explanation:
From the question we are told that
The relationship between the number of whooping cranes and the number of decades is 
The exponential relationship is
Now from the given equation we have that


So comparing this equation obtained an the given exponential relationship we have that




Answer:
This does not violate the conservation of energy.
Explanation:
This does not violate the conservation of energy because the hot body gives energy in the form of heat to the colder body, this second absorbs energy. This will be the case until both bodies reach the same temperature, reaching thermal equilibrium and reducing the transfer of thermal energy. In this way the energy was only transferred from one body to another but the total energy of the system (body 1 plus body 2) will be the same as in the beginning, respecting the principle of conservation of energy or also called the first principle of thermodynamics .
The part of physics that studies these processes is in turn called heat transfer or heat transfer or thermal transfer. Heat transfer occurs whenever there is a thermal gradient or when two systems with different temperatures come into contact. The process persists until thermal equilibrium is reached, that is, until temperatures are equalized. When there is a temperature difference between two objects or regions close enough, the heat transfer cannot be stopped, it can only be slowed down.