Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.
Using
V = Amplitude x angular frequency(omega)
But omega= 2πf
= 2πx875
=5498.5rad/s
So v= 1.25mm x 5498.5
= 6.82m/s
B. .Acceleration is omega² x radius= 104ms²
Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N