1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
2 years ago
13

Will give brainliest, Pleaseee help!!!

Physics
1 answer:
puteri [66]2 years ago
5 0

Answer:

below

Explanation:

1.1115 im not sure tho

You might be interested in
It was once recorded that a Jaguar
Artyom0805 [142]

Answer:

71.85 m/s

Explanation:

Given the following :

Length of skid marks left by jaguar (s) = 290 m

Skidding Acceleration (a) = - 8.90m/s²

Final velocity of jaguar (v) = 0

Speed of Jaguar before it Began to skid =?

Hence, initial speed of jaguar could be obtained using the formula :

v² = u² + 2as

Where

v = final speed of jaguar ; u = initial speed of jaguar(before it Began to skid) ; a = acceleration of jaguar ; s = distance /length of skid marks left by jaguar

0² = u² + (2 × (-8.90) × 290)

0 = u² + (-5,162)

u² = 5162

Take the square root of both sides

u = √5162

u = 71.847 m/s

u = 71.85m/s

6 0
3 years ago
What portion (division) of a meter stick is a centimeter?
Anastasy [175]
A meter is 100 meters. So a hundredth of a meter stick is a centimeter.<span />
8 0
3 years ago
Read 2 more answers
The red light from a helium-neon laser has a wavelength of 721.4 nm in air. Find the speed, wavelength, and frequency of helium-
saveliy_v [14]

Answer:

(a) the speed of helium-neon laser light in air is 3 x 10⁸ m/s

     the wavelength of helium-neon laser light in air is 721.4 nm

     the frequency of helium-neon laser light in air is 415.86 THz

(b)  the speed of helium-neon laser light in water is 2.26 x 10⁸ m/s

     the wavelength of helium-neon laser light in water is  542.4nm

     the frequency of helium-neon laser light in water is    416.67THz

(c) the speed of helium-neon laser light in glass is 2 x 10⁸ m/s

    the wavelength of helium-neon laser light in glass is  480.9nm

    the frequency of helium-neon laser light in glass is  415.88THz

From the results above, it can be seen that speed of the light is directly proportional to its wavelength, while the frequency of the light remained fairly constant for the different media.

Explanation:

Part (a) the speed, wavelength, and frequency of helium-neon laser light in air

Given;

wavelength of helium-neon laser light in air, λ = 721.4 nm

speed of light in air, v = 3 x 10⁸ m/s

v = f λ

where;

f is the frequency of helium-neon laser light in air

f = \frac{v}{\lambda} = \frac{3*10^8}{721.4 *10^{-9}} =4.1586*10^{14} \ Hz

f = 415.86 THz

Part (b) the speed, wavelength, and frequency of helium-neon laser light in water

refractive index of water = 1.33

Refractive \ index \ of \ water =\frac{speed \ of \ light \ in \ air}{speed \ of \ light \ in \ water} = \frac{wavelength \ of \ light \ in \ air}{wavelength \ of \ light \ in \ water}

speed \ of \ light \ in \ water = \frac{speed \ of \ light \ in \ air}{Refractive \ index \ of \ water} \\\\speed \ of \ light \ in \ water = \frac{3*10^8}{1.33} = 2.26 *10^8 \ m/s

Again;

wavelength \ of \ light \ in \ water = \frac{wavelength \ of \ light \ in \ air}{Refractive \ index \ of \ water} \\\\wavelength \ of \ light \ in \ water = \frac{721.4 \ nm}{1.33} = 542.4 \ nm

f = \frac{v}{\lambda} = \frac{2.26*10^8}{542.4 *10^{-9}} =4.1667*10^{14} \ Hz

f = 416.67 THz

Part (c) the speed, wavelength, and frequency of helium-neon laser light in glass

Refractive index of glass = 1.5

speed \ of \ light \ in \ glass = \frac{speed \ of \ light \ in \ air}{Refractive \ index \ of \ glass} \\\\speed \ of \ light \ in \ glass = \frac{3*10^8}{1.5} = 2 *10^8 \ m/s

Also;

wavelength \ of \ light \ in \ glass = \frac{wavelength \ of \ light \ in \ air}{Refractive \ index \ of \ glass} \\\\wavelength \ of \ light \ in \ glass = \frac{721.4 \ nm }{1.5} = 480.9 \ nm

f = \frac{v}{\lambda} = \frac{2*10^8}{480.9 *10^{-9}} =4.1588*10^{14} \ Hz

f = 415.88 THz

5 0
3 years ago
Read 2 more answers
What is the velocity of a penny dropped from the roof after 5 seconds?
Ksivusya [100]

Answer:

49 m/s

Explanation:

Acceleration = velocity / time

You should know accleration due to gravity is 9.8 m/s^2 and you're given t = 5, so you can solve for velocity:

9.8 = v / 5

v = 49

4 0
3 years ago
Any change in an objects speed and /or direction ?
Alexeev081 [22]

Answer:

The answer to this question is acceleration or as scientist say velocity.

Explanation: We know that when you drive a car the acceleration is effected by the amount of speed you add when you press the gas,so you are accelerating the car faster.

8 0
2 years ago
Other questions:
  • A motorist is traveling at 20 m/s. He is 60 m from a stoplight when he sees it turn yellow. Is reaction time, before stepping on
    7·1 answer
  • A train takes ms eaddy 200 miles north and 150 miles south. The total trip took 3.5 hours what was the average velocity of the t
    6·1 answer
  • Which of the following is a vector quantity?
    14·2 answers
  • Does sound travels through your skull to your ear when you speak ? If yes then how ?
    8·1 answer
  • Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 mm away horizontal
    9·1 answer
  • What is the unit of measurement of velocity
    5·2 answers
  • Which types of muscle enables your stomach to produce a churning sound
    12·1 answer
  • All changes in the state of matter of a substance requires a change in
    12·2 answers
  • The critical angle for water is 49°. If a ray of light
    8·1 answer
  • A marble, rolling with speed of 20m/sec rolls off the edge of the table that is 180m high (g=10m/sec2), find time taken to drop
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!