Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
Air pressure is the wi get of air molecules pressing down on the earth. The pressure of the air molecules changes as you move upward from sea level into the atmosphere, the highest pressure is at sea level where the density of the air molecules is the greatest.
The Electric field is zero at a distance 2.492 cm from the origin.
Let A be point where the charge
C is placed which is the origin.
Let B be the point where the charge
C is placed. Given that B is at a distance 1 cm from the origin.
Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.
i.e., at distance 'x' from B.
Using Coulomb's law,
,
= 



k is the Coulomb's law constant.
On substituting the values into the above equation, we get,

Taking square roots on both sides and simplifying and solving for x, we get,
1.67x = 1+x
Therefore, x = 1.492 cm
Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.
Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926
#SPJ4
A theory is a system of ideas that isn't exactly proven to be true fully. A law is a description of whatever scientific phenomena you're studying. All you need to know is a law describes, and a theory explains.