1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
3 years ago
13

A steel wire is suspended vertically from its upper end. The wire is 400 ft long and has a diameter of 3/16 in. The unit weight

of steel is 490 pcf. Compute:
a. the maximum tensile stress due to the weight of the wire
b. the maximum load P that could be supported at the lower end of the wire. Allowable tensile stress is 24,000 psi.
Engineering
1 answer:
jek_recluse [69]3 years ago
5 0

Answer:

a) the maximum tensile stress due to the weight of the wire is 1361.23 psi

b) the maximum load P that could be supported at the lower end of the wire is 624.83 lb

Explanation:

Given the data in the question;

Length of wire L = 400 ft = ( 400 × 12 )in = 4800 in

Diameter d = 3/16 in

Unit weight w = 490 pcf

First we determine the area of the wire;

A = π/4 × d²

we substitute

A = π/4 × (3/16)²

A = 0.0276 in²

Next we get the Volume

V = Area × Length of wire

we substitute

V = 0.0276 × 4800

V = 132.48 in³

Weight of the steel wire will be;

W = Unit weight × Volume

we substitute

W = 490 × ( 132.48 / 12³ )

W = 490 × 0.076666

W = 37.57 lb

a) the maximum tensile stress due to the weight of the wire;

σ_w = W / A

we substitute

σ_w = 37.57 / 0.0276

= 1361.23 psi

Therefore, the maximum tensile stress due to the weight of the wire is 1361.23 psi

b) the maximum load P that could be supported at the lower end of the wire. Allowable tensile stress is 24,000 psi

Maximum load P that the wire can safely support its lower end will be;

P = ( σ_{all - σ_w )A

we substitute

P = ( 24000 - 1361.23  )0.0276

P = 22638.77 × 0.0276

P = 624.83 lb

Therefore, the maximum load P that could be supported at the lower end of the wire is 624.83 lb

You might be interested in
A car is traveling at sea level at 78 mi/h on a 4% upgrade before the driver sees a fallen tree in the roadway 150 feet away. Th
Dmitrij [34]

Answer: V = 47.7 mi/hr

Explanation:

first we calculate elements of aero-dynamic resistance

Ka = p/2 * CD * A.f

p is the density of air(0.002378 slugs/ft^3) for zero altitude, CD is the drag coefficient(0.35) and A.f is the front region of the vehicle

so we substitute

Ka = 0.002378/2 * 0.35 * 18

Ka = 0.00749

Now we calculate the final speed of the vehicle (V2) using the relation;

S = (YbW/2gKa)In[ (UW + KaV1^2 + FriW ± Wsinθg) / (UW + KaV2^2 + FriW ± Wsinθg)

so

WE SUBSTITUTE

150 = (1.04 * 2700 / 2 * 32.2 * 0.0075) In [(0.8 * 2700 + 0.0075 *(78mil/hr * 5280ft/1min * 1hr/3600s)^2 + 0.017 * 2700 ± 2700 * 0.04) / (0.8 * 2700 + 0.0075 * V2^2 + 0.017 * 2700 ± 2700 * 0.04)]

150 = (2808/0.483) In [(2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

150 = 5813.66 In [ (2160 + 98.16 + 153.9) / ( 2160 + 0.0075V2^2 + 153.9)]

divide both sides by 5813.66

0.0258 = In [ (2412.06) / ( 0.0075V2^2 + 2313.9)]

take the e^ of both side

e^0.0258 = (2412.06) / ( 0.0075V2^2 + 2313.9)

1.0261 = (2412.06) / ( 0.0075V2^2 + 2313.9)]

(0.0075V2^2 + 2313.9) = 2412.06 / 1.0261

(0.0075V2^2 + 2313.9) = 2350.7

0.0075V2^2 = 2350.7 - 2313.9

0.0075V2^2 = 36.8

V2^2 = 36.8 / 0.0075

V2^2 = 4906.6666

V2 = √4906.6666

V2 = 70.0476 ft/s

converting to miles per hour

V2 = 70.0476 ft/s * 1 mil / 5280 ft * 3600s / 1hr

V = 47.7 mi/hr

8 0
3 years ago
You should use the pass technique a fire extinguisher
PilotLPTM [1.2K]

Answer:

Yes

Explanation:

8 0
3 years ago
As cylinder pressure and heat increase due to an increased load condition, the fuel injection management system must ___________
Temka [501]

possible Answers:

Compensate ⭐⭐⭐⭐⭐

Adjust            ⭐⭐⭐⭐⭐

regulate         ⭐⭐⭐⭐

tune               ⭐⭐⭐

calibrate        ⭐⭐⭐

balance         ⭐⭐

correct           ⭐

6 0
2 years ago
A glass bottle washing facility uses a well agitated hot water bath at 50°C with an open top that is placed on the ground. The b
DochEvi [55]

Answer:

do the wam wam

Explanation:

7 0
3 years ago
Use the graph to determine which statement is true about the end behavior of f(x).
Airida [17]

Answer:

As the x-values go to negative infinity, the function’s values go to positive infinity.

Explanation:

if the ans choices are:

As the x-values go to negative infinity, the function’s values go to negative infinity.

As the x-values go to negative infinity, the function’s values go to positive infinity.

As the x-values go to positive infinity, the function’s values go to negative infinity.

As the x-values go to positive infinity, the function’s values go to zero.

the ans is the 2nd choice

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the difference between a job and a profession
    9·1 answer
  • To 3 significant digits, what is the temperature of water in degrees C, if its pressure is 350 kPa and the quality is 0.01
    7·1 answer
  • How do I cancel my subscription
    12·2 answers
  • Explain the differences among sand, silt, and clay, both in their physical characteristics and their behavior in relation to bui
    15·1 answer
  • The present worth of income from an investment that follows an arithmetic gradient is projected to be $475,000. The income in ye
    9·1 answer
  • Quinn’s relatives relayed a story about putting on a headset and seeing a digital world that they could walk around in and explo
    8·2 answers
  • QUESTION 6
    10·1 answer
  • A dual-fluid heat exchanger has 10 lbm/s water entering at 100 F, 20 psia and leaving at 50 F, 20 psia. The other fluid is glyco
    13·1 answer
  • What is the moment that the wrench puts on the bolt?
    13·1 answer
  • What is the purpose of encryption?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!