Answer:
a mass of water required is mw= 1273.26 gr = 1.27376 Kg
Explanation:
Assuming that the steam also gives out latent heat, the heat provided should be same for cooling the hot water than cooling the steam and condense it completely:
Q = mw * cw * ΔTw = ms * cs * ΔTw + ms * L
where m = mass , c= specific heat , ΔT=temperature change, L = latent heat of condensation
therefore
mw = ( ms * cs * ΔTw + ms * L )/ (cw * ΔTw )
replacing values
mw = [182g * 2.078 J/g°C*(118°C-100°C) + 118 g * 2260 J/g ] /[4.187 J/g°C * (90.7°C-39.4°C)] = 1273.26 gr = 1.27376 Kg
Answer:
The expression is shown in the explanation below:
Explanation:
Thinking process:
Let the time period of a simple pendulum be given by the expression:

Let the fundamental units be mass= M, time = t, length = L
Then the equation will be in the form


where k is the constant of proportionality.
Now putting the dimensional formula:
![T = KM^{a}L^{b} [LT^{-} ^{2}]^{c}](https://tex.z-dn.net/?f=T%20%3D%20KM%5E%7Ba%7DL%5E%7Bb%7D%20%20%5BLT%5E%7B-%7D%20%5E%7B2%7D%5D%5E%7Bc%7D)

Equating the powers gives:
a = 0
b + c = 0
2c = 1, c = -1/2
b = 1/2
so;
a = 0 , b = 1/2 , c = -1/2
Therefore:

T = 
where k = 
Answer:
to make the bace of a building more sturdy
Explanation:
example: the bace of the empire state building is stone very sturdy
Answer:
ΔQ = 4930.37 BTu
Explanation:
given data
height h = 8ft
Δt = 8 hours
length L = 24 feet
R value = 16.2 hr⋅°F⋅ft² /Btu
inside temperature t1 = 68°F
outside temperature t2 = 16°F
to find out
number of Btu conducted
solution
we get here number of Btu conducted by this expression that s
......................1
here A is area that is = h × L = 8 × 24 = 1492 ft²
put here value we get
solve it we get
ΔQ = 4930.37 BTu
The best answer would be
D. Int calculateCost(int count);