Answer:
C) to show that atoms are conserved in chemical reactions
Explanation:
When writing a chemical reaction, we should always consider the Mass Conservation Law, which basically states that; in an isolated system; the total mass should remain constant, this is, the total mass of the reactives should be equal to the total mass of the products
For this case, we should add the apporpiate coefficients in order to be in compliance with this law:
2H₂ + O₂ → 2H₂O
So, we can check the above statement:
For reactives (left side):
4H
2O
For product (right side):
4H
2O
C is the answer hope the answer is right
Answer:
[KOH] = 0.10M in KOH
Explanation:
Molar Concentration [M] = moles solute/volume solution in liters
moles KOH = 0.56g/56g/mole = 0.01mole
Volume of solution = 100cm³ = 100ml = 0.10 liter
[KOH] = 0.01 mole KOH / 0.10 liter solution = 0.10M in KOH
Answer:
C. Its oxidation number increases.
Explanation:
- <em><u>Oxidation is defined as the loss of electrons by an atom while reduction is the gain of electrons by an atom</u></em>.
- Atoms of elements have an oxidation number of Zero in their elemental state.
- When an atom looses electrons it undergoes oxidation and its oxidation number increases.
- For example, <em><u>an atom of sodium (Na) at its elemental state has an oxidation number of 0. When the sodium atom looses an electrons it becomes a cation, Na+, with an oxidation number of +1 , the loss of electron shows an increase in oxidation number from 0 to +1.</u></em>