Answer:
1) herbivors
2) members of the same species living in the same place at the same time
please mark as brainliest
The speed of the roller coater at the bottom of the hill is 31 m/s.
<h3>
Speed of the roller coater at the bottom of the hill</h3>
Apply the principle of conservation of mechanical energy as follows;
K.E(bottom) = P.E(top)
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the speed of the coater at bottom hill
- h is the height of the hill
- g is acceleration due to gravity
v = √(2 x 9.8 x 49)
v = 31 m/s
Thus, the speed of the roller coater at the bottom of the hill is 31 m/s.
Learn more about speed here: brainly.com/question/6504879
#SPJ1
Answer:
20 J
Explanation:
Given:
Weight of the book is,
Height or displacement of the book is,
The work done on the book to raise it to a height of 2 m on a shelf is against gravity. The gravitational force acting on the book is equal to its weight. Now, in order to raise it, an equal amount of force must be applied in the opposite direction.
So, the force applied by me should be equal to weight of the body and in the upward direction. The displacement is also in the upward direction.
Now, work done by the applied force is equal to the product of force applied and displacement of book in the direction of the applied force.
Therefore, work done is given as:
Therefore, the work done to raise a book to a height 2 m from the floor is 20 J.
Answer:
See the explanation below
Explanation:
We must perform a sum of forces on the body, that sum of forces is equal to zero. That is, the body is in balance and does not move.
ΣF = 0
3 - 3 = 0
This force is negative and acts by pointing downwards.
Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)