1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
2 years ago
10

A thin nonconducting rod with a uniform distribution of positive charge Q is bent into a complete circle of radius R. The centra

l perpendicular axis through the ring is a z axis, with the origin at the center of the ring. What is the magnitude of the electric field due to the rod at (a) z = 0 and (b) z =
[infinity]
? (c) In terms of R, at what positive value of z is that magnitude maximum? (d) If R = 2.00 cm and Q = 4.00 mC, what is the maximum magnitude?
Physics
1 answer:
Dmitriy789 [7]2 years ago
6 0

Answer:

(a). If z = 0, The electric field due to the rod is zero.

(b). If z =  ∞, The electric field due to the rod is E\propto\dfrac{1}{z^2}.

(c). The positive distance is \dfrac{R}{\sqrt{2}}

(d). The maximum magnitude of electric field is 1.54\times10^{4}\ N/C

Explanation:

Given that,

Radius = 2.00 cm

Charge = 4.00 mC

(a). If the radius and charge are R and Q.

We need to calculate the electric field due to the rod

Using formula of electric field

E=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{Qz}{(z^2+R^2)^{\frac{2}{3}}}

Where, Q = charge

z = distance

If z = 0,

Then, The electric field is

E=0

(b). If z = ∞, z>>R

So, R = 0

Then, the electric field is

E=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{Q}{z^2}

E\propto\dfrac{1}{z^2}

(c). In terms of R,

We need to calculate the positive distance

If E\rightarrow E_{max}

Then, \dfrac{dE}{dz}=0

\dfrac{Q}{4\pi\epsilon_{0}}(\dfrac{(z^2+R^2)^\frac{3}{2}-\dfrac{3z}{2}(z^2+R^2)^\dfrac{1}{2}}{(z^2+R^2)^2})=0

Taking only positive distance

z=\dfrac{R}{\sqrt{2}}

(d). If R = 2.00 and Q = 4.00 mC

We need to calculate the maximum magnitude of electric field

Using formula of electric field

E_{max}=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{Qz}{(z^2+R^2)^{\frac{2}{3}}}

E_{max}=9\times10^{9}\times\dfrac{4.0\times10^{-6}\times\dfrac{2.00}{\sqrt{2}}}{((\dfrac{2.00}{\sqrt{2}})^2+(2.00)^2)^{\frac{2}{3}}}

E_{max}=15418.7\ N/C

E_{max}=1.54\times10^{4}\ N/C

Hence, (a). If z = 0, The electric field due to the rod is zero.

(b). If z =  ∞, The electric field due to the rod is E\propto\dfrac{1}{z^2}.

(c). The positive distance is \dfrac{R}{\sqrt{2}}

(d). The maximum magnitude of electric field is 1.54\times10^{4}\ N/C

You might be interested in
A dragster runs the quarter mile in 8.96 s. What is the car's velocity (in ft/s) at the finish line?
lara [203]
The first thing you should know to answer this question is the following conversion:
 1mi = 5280feet
 We have then that the speed is:
 v = ((1/4) * (5280)) / (8.96)
 v = 147.32 feet / s
 Answer:
 the car's velocity (in ft / s) at the finish line is 147.32 feet / s
7 0
3 years ago
calculate the work done by 2N force directed at 30 degree to the vertical to move a 500g box a horizontal distance of 400 cm acr
sattari [20]

Answer:

there is no picture :o?

Explanation:

:oo

3 0
2 years ago
1. Which mathematical representation correctly identifies impulse?
horsena [70]

Answer:

1. B. Impulse = Force × Time

2. A. The momentum of each ball changes, and the total momentum stays the same

3. -55 kg·m/s

4. B. 3.5 kg

5. C. 6.3 m/s

Explanation:

1. The impulse is the momentum change of an object due to a force applied for a given period

2. Given that the objects collide, and the force of the 3 kg mass moving with 24 kg·m/s acts on the 1 kg mass while the total momentum is conserved;

The stationary ball of mass 1 kg begins to moves at certain velocity after collision and therefore changes momentum, while the velocity of the ball of mass 3.0 kg reduces and the total combined momentum of the two balls in the closed system remains the same

3. By the principle of conservation of linear momentum, we have;

The sum of the momentum before the collision = The sum of the momentum after collision

Given that the objects move together after the collision, the total momentum is therefore;

Total momentum = 110 kg·m/s + -65 kg·m/s + -100 kg·m/s = 110 kg·m/s - 65 kg·m/s - 100 kg·m/s  = -55kg·m/s

4. Given that the final velocity of the two objects (m₁ + m₂) combined = 50 m/s

Where;

m₁ = The mass of the first object

m₂ = The mass of the second object

The total momentum of the system = 250 kg·m/s

From momentum = Mass × Velocity, we have;

Mass = Momentum/Velocity = 250 kg·m/s/(50 m/s) = 5.0 kg

The mass (m₁ + m₂) = 5.0 kg

Given that m₁ = 1.5 kg, we have;

m₂ = 5.0 kg - m₁ = 5.0 kg - 1.5 kg = 3.5 kg

The mass of the second object = 3.5 kg

5. The mass of the cue stick = 0.5 kg

The velocity of the cue stick = 2.5 m/s

The mass of the ball = 0.2 kg

The initial velocity of the ball = 0 m/s

Given that total initial momentum = Total final momentum, we have;

0.5 kg × 2.5 m/s + 0.2 kg × 0 = 0.2 kg × v + 0.5 kg × 0

0.5 kg × 2.5 m/s = 0.2 kg × v

v = (0.5 kg × 2.5 m/s)/(0.2 kg) = 6.25  m/s ≈ 6.3 m/s

3 0
3 years ago
It is proposed that a spaceship might be propelled in the solar system by radiation pressure, using a large sail made of foil. W
Anvisha [2.4K]

Answer:

962291.57928 m²

Explanation:

P_r = Pressure = 2\dfrac{I}{c}  (full reflection)

I = Intensity = \dfrac{P}{A}=\dfrac{P}{4\pi r^2}

P = Power = 3.9\times 10^{26}\ W

c = Speed of light = 3\times 10^8\ m/s

M = Mass of Sun = 1.99\times 10^{30}\ kg

m = Mass of ship = 1500 kg

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

Force of radiation is given by

F_r=P_rA\\\Rightarrow F_r=2\dfrac{I}{c}\times A\\\Rightarrow F_r=2\dfrac{P}{4\pi r^2c} A

This force will balance the gravitational force as stated in the question

\dfrac{GMm}{r^2}=2\dfrac{P}{4\pi r^2c} A\\\Rightarrow A=\dfrac{4\pi cGMm}{2P}\\\Rightarrow A=\dfrac{4\times \pi\times 3\times 10^8\times 6.67\times 10^{-11}\times 1.99\times 10^{30}\times 1500}{2\times 3.9\times 10^{26}}\\\Rightarrow A=962291.57928\ m^2

The area of the must be 962291.57928 m²

3 0
3 years ago
A baseball is thrown straight up from a building that is 25 meters tall with an initial velocity v = 10 m/s. How fast is it goin
Yanka [14]

Answer:-24,5m/s

Explanation: what we have here is a UALM with these gravity as acceleration (-9.8 m/s^2). The initial position is 25 m and initial speed is 10m/s.

Speed and gravity are increasing in the opposite direction, speed upwards and gravity downwards, while the position is also upwards, depending on your reference system.

The first thing I need to know is the maximum high it will reach.

Hmax=- S(0)^2/2g=

S= speed.

0= initial

G= gravity

Hm= 100/19,6= 5.1 m

So, the ball will go 5,1 m higher than the initial position, and from there it will fall free.

Then, I need to know how long it takes to fall. For that we use UALM equation:

X(t)= X(0) + S(0)*t + (A*t^2)/2.

X: position

S: speed

A: acceleration

T:time

0: initial

0 = 25m +10*t -(9.8 * t^2)/2

Solving the quadratic equation we get

T= 3,5 sec. ( Negative value for time is impossible)

So now we know that the ball to go up and then fall needs 3,5 sec.

Let's see how long it takes to go up:

30,1=25+10*t-4,9*t^2

0=-5,1+10*t-4,9*t^2

T= 1 sec. So it will take 1 sec to the ball to reach the maximum high and 0=speed and then it'll fall during the resting 2,5 sec

Finally, to know the speed just before it touches the ground, we use the following formula:

A= (St-S0)/t

-9.8m/s^2 = (St- 0m/s)/ 2,5s

-24,5 m/s= St

-24,5 m/s is the speed at 3,5 sec, which is the time just before falling

3 0
3 years ago
Other questions:
  • Rutherford proposed that
    13·1 answer
  • A proton moves with a speed of 3.60 106 m/s horizontally, at a right angle to a magnetic field. what magnetic field strength is
    9·1 answer
  • You run 100 meters in 15 seconds. What is your speed in m/s? and show your work
    13·1 answer
  • Dr. Martin Luther King, Jr., used which method to draw attention to the civil rights movement?
    15·1 answer
  • Sara wanted to paddle her canoe in the swamp to see alligators. She dragged the 45 Newton canoe for 36 seconds down the boardwal
    15·1 answer
  • A remote-controlled car’s wheel accelerates at 22.2 rad/s2 . If the wheel begins with an angular speed of 11.0 rad/s, what is th
    5·1 answer
  • An electron traveling parallel to a uniform electric field increases its speed from 2.0 * 107 m/s to 4.0 * 107 m/s over a distan
    12·2 answers
  • Arteriosclerotic plaques forming on the inner walls of arteries can decrease the effective cross-sectional area of an artery. Ev
    5·2 answers
  • a person Travels along a straight road for half the distance with velocity V1 and the remaining half the distance with velocity
    7·1 answer
  • PLEASE HELP WITH THIS QUESTION<br><br>What of Newton's 3 laws is this picture​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!