Well, almost any website can be, but if you are meaning for money, then google. if you are meaning reliable, then look for something with .org, its history and stuff
Answer:
The car C has KE = 100, PE = 0
Explanation:
The principle of conservation of energy states that although energy can be transformed from one form to another, the total energy of the given system remains unchanged.
The energy that a body possesses due to its motion or position is known as mechanical energy. There are two kinds of mechanical energy: kinetic energy, KE and potential energy, PE.
Kinetic energy is the energy that a body possesses due to its motion.
Potential energy is the energy a body possesses due to its position.
From the principle of conservation of energy, kinetic energy can be transformed into potential energy and vice versa, but in all cases the energy is conserved or constant.
In the diagram above, the cars at various positions of rest or motion are transforming the various forms of mechanical energy, but the total energy is conserved at every point. At the point A, energy is all potential, at B, it is partly potential partly kinetic energy, However, at the point C, all the potential energy has been converted to kinetic energy. At D, some of the kinetic energy has been converted to potential energy as the car climbs up the hill.
Therefore, the car C has KE = 100, PE = 0
145 Grams!
It asks for the “Total Mass” basically asking to add, If you add 20 to 125, you get 145! Correct me if im wrong
Voltmeter is used to find the potential difference between two points.
We always connect it in parallel to the points where we need the potential difference.
Here in order to make the reading accurate we can increase the resistance of voltmeter so that it can not withdraw any current from the circuit.
Answer: 11,100 ft/s^2
1) Constant acceleration=> uniformly accelerated motion.
2) Formula for uniformly accelerated motion:
Vf = Vo + at
3) Data:
Vo = 1,100 ft/s
a = 1,000 ft/s^2
t = 10.0 s
4) Solution:
Vf = 1,100 ft/s + 1,000 ft/s^2 * 10.0 s = 1,100 ft/s + 10,000 ft/s
Vf = 11,100 ft/s