Answer:
You're strong.
Explanation:
I've been thinking of this for quite a while, and I realized that your body has a certain limit to how much pain it can take. So, punching yourself extremely hard will cause pain, because that's your body's reaction to immense pressure being put on it. But, the fact that you punched yourself so hard that it hurts, shows that you are capable of applying so much pressure; therefore, you are strong.
Answer:
1.4 m/s/s (2.s.f)
Explanation:
The formula for centripetal acceleration is:
, where v is velocity and r is the radius.
In the question we are given the information that the car has a mass of 1300kg, a velocity of 2.5m/s, and a turn radius of 8.5m which are all the values we need. Therefore we can simply substitute in the values to solve the question:

Therefore the centripetal acceleration of the car is 1.4m/s/s. (2.s.f)
Hope this helped!
It’s around the g force so it’s gonna be around 54 km/h
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:

If "0.3 minute" is correct, then it's 9,543,272 Joules.
If it's supposed to say "0.3 SECOND", then the KE is 2,651 Joules.