Answer:

Explanation:
As in any sample you will have 75.8% of Cl-35 iosotopes and 24.3% of Cl-37 iosotopes you can get the average atomic mass as:

The frequency of the oscillation in hertz is calculated to be 0.00031 Hz.
The frequency of a wave is defined as the number of cycles completed per second while the period refers to the time taken to complete a cycle. The frequency is the inverse of period.
So;
Period(T) = 54 minutes or 3240 seconds
Frequency (f) = T-1 = 1/T = 1/3240 seconds = 0.00031 Hz
Learn more: brainly.com/question/14588679
<u>Answer:</u>
Both the objects A and B will have the same acceleration.
<u>Explanation
:</u>
The objects will have the same acceleration as both are under free fall condition. When objects are under the free fall condition, the only force that acts on the object is its weight.
Weight is the force acting on a body of some mass, and the formula for finding the weight of a body is- Weight = mass × acceleration due to gravity(g).
Therefore, here the different weight is due to the difference masses of both bodies, and not due to the different acceleration values.
Answer:
ε₂ =2.63 V
Explanation:
given,
M = 0.0034 H
I (t) = I₀ sin (ωt)
I (t) = 5.4 sin (143 t)


magnitude of the induced emf in the second coil
ε₂ =
ε₂ =
for maximum emf
cos (143 t) = 1
ε₂ =
ε₂ =2.63 V
Answer:
b.)Electrons leave the negative battery terminal and electrons enter the positive terminal.
Explanation:
- First of all, the carriers of charge in an electrical circuit are the electrons, not the protons. In fact, electrons in a conductor (such as the copper wire) are free to move, while protons are bond inside the nuclei of the atoms, so they are not free to move. This means that only choices a) and b) could be correct.
- Finally, we know that charges with same sign repel each other, while charges with opposite sign attract each other. This means that electrons are repelled by the negative terminal of the battery and attracted by the positive terminal of the battery. Therefore, the correct choice must be
b.)Electrons leave the negative battery terminal and electrons enter the positive terminal.