The electric force between the two particles are calculated through the equation,
F = kQ₁Q₂ / d²
where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
The answer to this item is therefore letter A.
Input heat, Qin = 4 x 10⁵ J
Output heat, Qout = 3.5 x 10⁵ J
From the first Law of thermodynamics, obtain useful work performed as
W = Qin - Qout
= 0.5 x 10⁵ J
By definition, the efficiency is
η = W/Qin
= 100*(0.5 x 10⁵/4 x 10⁵)
= 12.5%
Answer: The efficiency is 12.5%
Answer: ok
Explanation:
The molecules in hot air are moving faster than the molecules in cold air. Because of this, the molecules in hot air tend to be further apart on average, giving hot air a lower density. That means, for the same volume of air, hot air has fewer molecules and so it weighs less.
Answer:
c. 0.80
Explanation:
they will choose the path that has not resistance
Answer:
a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center
Explanation:
Let n₁ and n₂ be no of lines per unit length of grating A and B respectively.
λ₁ and λ₂ be wave lengths of green and red respectively , D be distance of screen and d₁ and d₂ be distance between two slits of grating A and B ,
Distance of first maxima for green light
= λ₁ D/ d₁
Distance of first maxima for red light
= λ₂ D/ d₂
Given that
λ₁ D/ d₁ = λ₂ D/ d₂
λ₁ / d₁ = λ₂ / d₂
λ₁ / λ₂ = d₁ / d₂
But
λ₁ < λ₂
d₁ < d₂
Therefore no of lines per unit length of grating A will be more because
no of lines per unit length ∝ 1 / d
If grating B is illuminated with green light first maxima will be at distance
λ₁ D/ d₂
As λ₁ < λ₂
λ₁ D/ d₂ < λ₂ D/ d₂
λ₁ D/ d₂ < 1 m
In this case position of first maxima will be less than 1 meter.
Option a is correct .