1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
2 years ago
12

Six keplerian element table​

Physics
1 answer:
Vikentia [17]2 years ago
7 0
That’s the answer hope you enjoy

You might be interested in
a typical cmall flashlight contains two batteries each having na emf of 2.0 v connected in series with a bulb havin ga resistanc
Helen [10]

Answer:

P = 0.25 W

Explanation:

Given that,

The emf of the battry, E = 2 V

The resistance of a bulb, R = 16 ohms

We need to find the power delivered to the bulb. We know that, the formula for the power delivered is given by :

P=\dfrac{V^2}{R}\\\\P=\dfrac{2^2}{16}\\\\=0.25\ W

So, 0.25 W power is delivered to the bulb.

5 0
2 years ago
A 175-kg roller coaster car starts from rest at the top of an 18.0-m hill and rolls down the hill, then up a second hill that ha
Anni [7]

Answer:

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem we present the equations that describe the situation of the roller coaster car on each top of the hill. Let consider that bottom has a height of zero meters.

From top of the first hill to the bottom

m\cdot g \cdot h_{1} = \frac{1}{2}\cdot m\cdot v_{1}^{2} +W_{1, loss} (1)

From the bottom to the top of the second hill

\frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2}+W_{2,loss} (2)

Where:

m - Mass of the roller coaster car, in kilograms.

v_{1} - Speed of the roller coaster car at the bottom between the two hills, in meters per second.

g - Gravitational acceleration, in meters per square second.

h_{1} - Height of the first top of the hill with respect to the bottom, in meters.

W_{1, loss} - Work done by non-conservative forces on the car between the top of the first hill and the bottom, in joules.

v_{2} - Speed of the roller coaster car at the top of the second hill, in meters per seconds.

h_{2} - Height of the second top of the hill with respect to the bottom, in meters.

W_{2, loss} - Work done by non-conservative forces on the car bewteen the bottom between the two hills and the top of the second hill, in joules.

By using (1) and (2), we reduce the system of equation into a sole expression:

m\cdot g\cdot h_{1} = m\cdot g\cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2} + W_{loss} (3)

Where W_{loss} is the work done by non-conservative forces on the car from the top of the first hill to the top of the second hill, in joules.

If we know that m = 175\,kg, g = 9.807\,\frac{m}{s^{2}}, h_{1} = 18\,m, h_{2} = 8\,m and v_{2} = 11\,\frac{m}{s}, then the work done by non-conservative force is:

W_{loss} = m\cdot\left[ g\cdot \left(h_{1}-h_{2}\right)-\frac{1}{2}\cdot v_{2}^{2} \right]

W_{loss} = 6574.75\,J

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

8 0
2 years ago
How do magnetic forces repel or attract?
Lerok [7]

“Magnets are surrounded by an invisible magnetic field that is made by the movement of electrons, the subatomic particles that circle the nucleus of an atom”



“Every magnet has both a north and a south pole. When you place the north pole of one magnet near the south pole of another magnet, they are attracted to one another. When you place like poles of two magnets near each other (north to north or south to south), they will repel each other.”
3 0
3 years ago
Who was the first person to describe the earth as a magnet
denis-greek [22]

Answer:

William Gilbert

Explanation:

first described the Earth as a giant dipole magnet 400 years ago. But, as Rod Wilson recounts, he did far more than this.

5 0
2 years ago
Read 2 more answers
The resistance of a conductor depends on all of the following, except _____.
borishaifa [10]
Hello There!

The resistance of a conductor depends on all of the following except mass.
Mass wouldn't affect the resistance in any way.

Hope This Helps You!
Good Luck :) 

- Hannah ❤
5 0
3 years ago
Read 2 more answers
Other questions:
  • What investigations are best for demonstrating cause and effect relationship
    8·2 answers
  • Three horses are side-by-side on a merry-go-round: one at the edge, one near the axis, and one in between. Each horse has the sa
    10·1 answer
  • (b) How far from the surface will a particle go if it leaves the asteroid's surface with a radial speed of 1510 m/s? (c) With wh
    5·1 answer
  • How does Earth's rotation affect our view of stars
    11·1 answer
  • An inductor, battery, resistance, and ammeter and switch are connected in series. If the switch, initially open, is now closed,
    15·1 answer
  • Can anyone help me out with conservation of energy
    9·1 answer
  • 3. An airplane is heading north with an airspeed of 325 m/s with a wind from the east at 55.0 m/s. What is the airplane's veloci
    10·1 answer
  • When landing from a jump, a basketball player of mass 82 kg has a velocity of 1.2 m/s right before they hit the ground. The play
    12·1 answer
  • According to einstein's theory of simple relativity (_E + mc(2)_). BLANK is converted into BLANK.
    10·1 answer
  • 3. An astronaut travels to a far-away moon with a 1.5 m long pendulum. She finds it takes
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!