I found this off youtube, I hope it helps.
Start with the process of elimination. Obviously, color is not a specific component to a wave, so we can cancel that out. While there are frequencies and measurable speeds of waves, those are not considered parts of the wave; nor is the wavelength or the base considered to be a part of the wave. The crest is the highest point of the wave, and is considered a part of the wave, as well as the trough, which is the the lowest point on the wave.
Answer:
Solution Density of aluminium = 2.7 g/Cm 3 In kg/ m 3 = 27 × 1000 10 =2700 kg/ m 3
Explanation:
Not much of one
The flame goes an Orange-Red colour.
Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>