Answer:
N2C14
Explanation:
<em> determined the bond type by looking if it is a metal or nometal</em>
<em>Ionic Bond:NM+M</em>
<em>Covalent Bond:NM+NM</em>
I'd go for D here. It also fits in with the idea of thermal expansion - as something is heated up, molecules vibrate and maybe collide. they vibrate with bigger amplitudes, so taking up more space, so expanding. maybe
Elements of Group 1 and group 2 in the periodic
table contain elements so reactive that they are never found in the free state
<u>Explanation</u>:
The metals in group 1 of periodic table consisting of 'alkali metals' which include lithium, potassium, sodium, rubidium, Francium and caesium. They are highly reactive because they have low ionisation energy and larger radius. The group 2 metals consist of 'alkaline earth metals' which include calcium, strontium, barium, beryllium, radium and magnesium. These alkaline earth metal have +2 oxidation number, hence are highly reactive.
These both group metals are mostly reactive and so are never found in a free state. When they are exposed to air they would immediately react with oxygen. Hence, are stored in oils to avoid oxidation.
It is the Starch-glucose. Glucose is a solitary sugar particle that your body can retain specifically in the digestive system. Sucrose and starches are starches shaped by at least two sugars reinforced together. The sugars in sucrose and starch must be separated into glucose particles in the gastrointestinal tract before your digestive organs can assimilate them.
Answer:
<u><em>Arrhenius Acid:</em></u>
According to Arrhenius concept, Acids are proton donors.
Since H₂SO₄ have a proton (H⁺ ion) and it can donate it to be made a sulphate ion, So it is an Arrhenius acid.
See the following reaction =>
<u><em>H₂SO₄ + H₂O => HSO₄ + H₃O⁺</em></u>
<u><em>Arrhenius Base:</em></u>
An Arrhenius base is a a proton acceptor.
KOH accepts the proton to to made to KOH₂ and a proton acceptor.
See the following reaction =>
<u><em>KOH + H₂o => KOH₂ + OH⁻</em></u>
<u><em></em></u>