Answer:
the boat would be deeped by 3200 m
Explanation:
Given that
The boat arrives back after 4 seconds
And, the speed of the sound in water is 1,600 m/s
We need to find out how much deep is the water
So,
As we know that
Distance = ( speed × time) ÷ 2
Here we divided by 2 because the boat arrives back
= (1600 × 4) ÷ 2
= 3200 m
Therefore the boat would be deeped by 3200 m
Answer:
the water level remains same
Explanation:
This can be explained by Archimedes's principle which says that the wood will sink if weight of wood is more than the weight of the water displaced with weight equal to the water displaced otherwise the wood will float.
Therefore, buoyancy or the buoyant force is the same as the weight of wood, the weight of the water displaced by wood is also the same as that of the weight of wood.
Thus, we can see that the weight of the wood remains same and so is the level of water.
Example of surface events are erosion and weathering. Erosion is the carrying of a particle from one place to the other and weathering is the breaking down of particles. These processes help in rock formation because this allows physical changes (grouping together or breaking down) on a certain substance. Subsurface events are those which happened underground such as the flow of underground water which subsequently allow the deposition of minerals, etc.
Answer:
232.641374 mph
Explanation:
A race car has a maximum speed of 0.104km/s
Let X represent the speed in miles per hour
Therefore the speed in miles per hour can be calculated as follows
1 km/s = 2,236.936292 mph
0.104km/s = X
X = 0.104 × 2,236.936292
X = 232.641374
Hence the speed in miles per hour is 232.641374 mph
Answer:
Explanation:La ecuación de Van der Waals es una ecuación de estado de un fluido compuesto de partículas con un tamaño no despreciable y con fuerzas intermoleculares, como las fuerzas de Van der Waals. La ecuación, cuyo origen se remonta a 1873, debe su nombre a Johannes van der Waals, quien recibió el premio Nobel en 1910 por su trabajo en la ecuación de estado para gases y líquidos, la cual está basada en una modificación de la ley de los gases ideales para que se aproxime de manera más precisa al comportamiento de los gases reales al tener en cuenta su tamaño no nulo y la atracción entre sus partículas.