1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zmey [24]
2 years ago
6

Why would the shear stress be considered as the momentum flux.

Engineering
1 answer:
oksano4ka [1.4K]2 years ago
3 0

Answer:

A fluid flowing along a flat plate will stick to it at the point of contact

Explanation:

and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.

You might be interested in
The part of a circuit that carries the flow of electrons is referred to as the?
Oksanka [162]

Answer:

  Conductor

Explanation:

Current is carried by a conductor.

__

The purpose of a dielectric and/or insulator is to prevent current flow. An electrostatic field may set up the conditions for current flow, but it carries no current itself.

7 0
3 years ago
All of these are uses of microwaves except...
Talja [164]

Answer:D

Explanation:

5 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
Describe the greatest power in design according to Aravena?
Ann [662]

Answer: Describe the greatest power in design according to Aravena? The subject of Aravena’s recent Futuna Lecture Series in New Zealand was ‘the power of design,’ which he described as ultimately being “the power of synthesis” because, increasingly, architects are dealing with complex issues and problems.

What are the three problems with global urbanization? 1. Degraded Environmental Quality ...

2. Overcrowding ...

3. Housing Problems ...

4. Unemployment ...

5. Development of Slums...

How could you use synthesis in your life to solve problems? Hence, synthesis is often not a one-time process of solution design but is used in combination with problem understanding and solution analysis to progress towards a more complete understanding of problems and solutions over time (see Applying the Systems Approach topic for a more complete discussion of the dynamics of this aspect of the approach).

I got all three answers

4 0
2 years ago
The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas
mojhsa [17]

Answer:

A) Upper bound modulus of elasticity; E = 165.6 GPa

B) Lower bound modulus of elasticity; E = 83.09 GPa

Explanation:

A) Formula for upper bound modulus is given as;

E = E_m(1 - V_f) + E_f•V_f

We are given;

E_m = 60 GPa

E_f = 380 GPa

V_f = 33% = 0.33

Thus,

E = 60(1 - 0.33) + 380(0.33)

E = (60 x 0.67) + 125.4

E = 165.6 GPa

B) Formula for lower bound modulus is given as;

E = 1/[(V_f/E_f) + ((1 – V_f)/E_m)]

E = 1/[(0.33/380) + ((1 – 0.33)/60)]

E = 1/(0.0008684 + 0.01116667)

E = 1/0.01203507

E = 83.09 GPa

3 0
3 years ago
Other questions:
  • Memory Question!
    7·1 answer
  • A stainless-steel specimen from the same material characterized up above, was formed into a rectangular cross-section of dimensi
    9·1 answer
  • - Viscoelastic stress relaxation
    7·1 answer
  • Am i eating ramon nooddles rn
    10·2 answers
  • As the impurity concentration in solid solution of a metal is increased, the tensile strength:________.a) decreasesb) increasesc
    9·1 answer
  • Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
    11·1 answer
  • There are three options for heating a particular house: a. Gas: $1.33/therm where 1 therm=105,500 kJ b. Electric Resistance: $0.
    9·1 answer
  • In contouring, it is necessary to measure position and not velocity for feedback.
    9·1 answer
  • The section should span between 10.9 and 13.4 cm (4.30 and 5.30 inches) as measured from the end supports and should be able to
    5·1 answer
  • What does polarity give you information about?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!