Elements in group 1-2, 13-18, the number of valence electrons is related to the group number. For example, in the first group, the alkali metals there is one valence electron, however in group 13, there are 3 valence electrons. Valence electrons are also known as the outershell electrons.
Answer:
True.
Explanation:
To know which option is correct, let us calculate the number of mole present in 60g of calcium. This is illustrated below:
Mass of Ca = 60g
Molar Mass of Ca = 40g/mol
Number of mole Ca =....?
Number of mole = Mass/Molar Mass
Number of mole of Ca = 60/40
Number of mole Ca = 1.5 moles.
From the calculations made above, we can see that 1.5 moles are present in 60.0 grams of calcium
Moles are the division of the mass and the molar mass. The moles of mercury (ii) oxide in the decomposition reaction needed to produce oxygen are 0.781 moles.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction is a breakdown of the reactant into simpler products. The decomposition of mercury (ii) oxide can be shown as:
2HgO(s) → 2Hg(l) + O₂(g)
From the reaction, it can be said that 2 moles of mercury (ii) oxide decomposes to produce 1 mole of oxygen.
The moles of oxygen that needs to be produced are calculated as:
Moles = mass ÷ molar mass
= 12.5 gm ÷ 32 gm/mol
= 0.39 moles
0.39 moles of oxygen are needed to be produced.
From the stoichiometric coefficient of the reaction, the moles of HgO is calculated as: 2 × 0.39 = 0.781 moles
Therefore, 0.781 moles of HgO are required in the reaction.
Learn more about moles here:
brainly.com/question/3801333
#SPJ4