Answer:
(C) Mass of KCl(s), mass of H20, initial temperature of the water, and final temperature of the solution
Explanation:
molar enthalpy of solution of KCl(s) is heat evolved or absorbed when one mole of KCl is dissolved in water to make pure solution . The heat evolved or absorbed can be calculated by the following relation.
Q = msΔt where m is mass of solution or water , s is specific heat and Δt is change in temperature of water .
So data required is mass of water or solution , initial and final temperature of solution , specific heat of water is known .
Now to know molar heat , we require mass of solute or KCl dissolved to know heat heat absorbed or evolved by dissolution of one mole of solute .
Answer:
gravity that's what I rellat think it is
Answer:
semimetals or metalloids.
Explanation:
Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.