Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:

Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:

It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:

Beat regards!
Answer:
Morphology and phylogenetics revealed by fossils. Perhaps the strongest evidence to support the Cambrian evolutionary explosion of animal forms is the first clear appearance, in the Early Cambrian, of skeletal fossils representing members of many marine bilaterian animal phyla
Explanation:
also pls vote brainliest <3 :)))
Answer:
9 protons, 10 neutrons, and 9 electrons.
Explanation:
The particles of the nucleus of an atom of Fluorine-19 is
9 protons, 10 neutrons, and 9 electrons.
Answer:
The correct answer is: Dynamic equilibrium in a chemical reaction is the condition in which the rate of the forward reaction equals the rate of the reverse reaction.
Explanation:
Dynamic equilibrium is a chemical equilibrium between froward reaction and backward or reverse reaction where rate of reaction going forwards is equal to the rate of reaction going backward (reverse).
Some other properties of dynamic equilibrium are:
- Chemical equilibrium are attained is closed system.
- The macroscopic remains constant like: volume, pressure, energy etc.
- The concentration of the reactants and products remain constant.They are not always equal.
4 moles of NaCl is produced from 2 moles of Na₂CrO₄.
<u>Explanation:</u>
Given reaction is
PbCl₂(aq) + Na₂CrO₄(aq)→ PbCrO₄(s) + 2 NaCl (aq)
It is the balanced equation which means that on both sides of the equation, number of atoms of each element are equal.
From the above balanced equation it says that molar ratio of Na₂CrO₄ to NaCl is 1 : 2.
That is 1 mole of Na₂CrO₄ produces 2 moles of NaCl, so the molar ratio is 1:2.
2 moles of Na₂CrO₄ produces 4 moles of NaCl.
So the molar ratio of Na₂CrO₄ to NaCl is 2: 4.