Answer: 8.12 g NaCl
Explanation: Use Avogadro's number to find the number of m
moles of NaCl:
8.24x10²² molecules NaCl / 1 mole NaCl/ 6.022x10²³ molecules NaCl
= 0.14 mole NaCl
Next convert moles to grams NaCl using its molar mass;
0.14 mole NaCl x 58g NaCl / 1 mole NaCl
= 8.12 g NaCl
Advantages<span> of </span>nuclear power- <span>The generation of electricity </span>through nuclear energy<span> reduces the amount of </span>energy generated from fossil fuels, <span>Less </span>use of fossil fuels means lowering greenhouse gas emissions. <span>Another </span>advantage<span> is the required amount of fuel: less fuel offers more </span><span>energy
Disadvantages- </span><span>Like fossil fuels, </span>nuclear<span> fuels are non-renewable </span>energy <span>resources. And if there is an accident, large amounts of radioactive material could be released into the environment. In addition, </span>nuclear<span> waste remains radioactive and is hazardous to health for thousands of years.</span>
Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer:
D
Explanation:
I believe the answer is D.
Answer:

Explanation:
Hello,
In this case, the enthalpy of combustion is understood as the energy released when one mole of fuel, in this case octene, is burned in the presence of oxygen and is computed with the enthalpies of formation of the fuel, carbon dioxide and water as shown below (oxygen is circumvented as it is a pure element):

Thus, since we already know the enthalpy of combustion of the fuel, for carbon and water we have -393.5 and -241.8 kJ/mol respectively, thereby, the enthalpy of combustion turns out:

Best regards.