Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
Sodium is categorized as a B. Element.
I think the correct answer from the choices listed above is option A. <span>In an exothermic reaction, the bonding energy of the product is </span><span>less than the reactant because it is only at this condition that the energy is released by the reaction.</span>
Answer:
The answer to your question is 75%
Explanation:
Data
Theoretical production = 4 moles
Experimental production = 3 moles
Percent yield = ?
Formula

Substitution

Result
Percent yield = 75 %
North Dakota and Michigan because it has to be 32 Farenhieht or less to snow