Answer:
(a) 333.77 J
(b) 237.85 J
(c) 4763.77 J
(d) 4667.85 J
Explanation:
Temperature of source, TH = 314 K
Temperature of A, Tc = 292 K
Temperature of B, Tc' = 298 K
heat taken out, Qc = 4430 J
Let the heat deposited outside is QH and QH' by A and B respectively.

Now

(a) Work done for A
W = QH - QC = 4763.77 - 4430 = 333.77 J
(b) Work done for B
W' = QH' - Qc = 4667.85 - 4430 = 237.85 J
(c) QH = 4763.77 J
(d) QH' = 4667.85 J
I believe the correct answer would be letter c) circuit breaker
Answer:
<em>Both vehicles move east at 3.97 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states that the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is:
P=mv.
If we have a system of two bodies, then the total momentum is the sum of both momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'

Assume both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

Assuming east direction to be positive, we have an m1=1459 kg car traveling west at v1=-43 m/s. An m2=9755 kg truck is traveling east at v2=11 m/s. They collide head-on and stick together after that.
Computing the resultant velocity after the collision:


v' = 3.97 m/s
Both vehicles move east at 3.97 m/s
to increase the temperature of lead we know that the formula of heat required is given as

here we know that

m = 58.3 g


now from the above equation we have



also we can write its as
