Answer:
Explanation:
This is a limiting reactant problem.
Mg(s)
+
2HCl(aq)
→
MgCl
2
(
aq
)
+ H
2
(
g
)
Determine Moles of Magnesium
Divide the given mass of magnesium by its molar mass (atomic weight on periodic table in g/mol).
4.86
g Mg
×
1
mol Mg
24.3050
g Mg
=
0.200 mol Mg
Determine Moles of 2M Hydrochloric Acid
Convert
100 cm
3
to
100 mL
and then to
0.1 L
.
1 dm
3
=
1 L
Convert
2.00 mol/dm
3
to
2.00 mol/L
Multiply
0.1
L
times
2.00 mol/L
.
100
cm
3
×
1
mL
1
cm
3
×
1
L
1000
mL
=
0.1 L HCl
2.00 mol/dm
3
=
2.00 mol/L
0.1
L
×
2.00
mol
1
L
=
0.200 mol HCl
Multiply the moles of each reactant times the appropriate mole ratio from the balanced equation. Then multiply times the molar mass of hydrogen gas,
2.01588 g/mol
0.200
mol Mg
×
1
mol H
2
1
mol Mg
×
2.01588
g H
2
1
mol H
2
=
0.403 g H
2
0.200
mol HCl
×
1
mol H
2
2
mol HCl
×
2.01588
g H
2
1
mol H
2
=
0.202 g H
2
The limiting reactant is
HCl
, which will produce
0.202 g H
2
under the stated conditions.
pls mark as brainliest ans
It's the eye because it's the organ of sight
Answer:
<u>Oxidation state of Mn = +4</u>
Explanation:
Atomic mass of Mn = 55g/mol
From Faraday's law of electrolysis,
Electrochemical equivalent = 
i.e Z =
=
= 0.0001424 g/C
But Equivalent weight, E = atomic mass ÷ valency = Z × 96,485
⇒
= 0.0001424 × 96,485
<u>∴ Valency of Mn = +4</u>
Answer:
D. 6
Explanation:
Each pointy end represents 1 carbon. So in total we have six carbons.
The name of this organic compound is hexane.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The solution to this question is shown on the second uploaded image
Explanation: