Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:

Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
Answer:
Mass
Step-by-step explanation:
Usually, you plot the independent variable along the horizontal (x) axis and the dependent variable along the vertical (y) axis.
Marcia's teacher plotted the mass of the sample along the x-axis and volume along the y-axis.
The mass is the independent variable, because that is <em>what the teacher varied</em>.
The volume is the <em>dependent variable</em>, because it <em>depends</em> on the mass.
Sample number is <em>wrong</em>, because it is not a variable.
Substance is <em>wrong</em>, because all samples consist of the same substance.
Density is <em>wrong</em>, because it is constant. It is the slope of the graph.
Taking into account the reaction stoichiometry, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
CO₂ + 4 H₄ → CH₄ + 2 H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- CO₂: 1 mole
- H₄: 4 moles
- CH₄: 1 mole
- H₂O: 2 moles
<h3>Moles of CH₄ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 1 mole of CO₂ form 4 moles of CH₄, 85.1 moles of CO₂ form how many moles of CH₄?

<u><em>moles of CH₄= 340.4 moles</em></u>
Then, 340.0 moles of methane are produced when 85.1 moles of carbon dioxide gas react with excess hydrogen gas
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1