1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Thepotemich [5.8K]
2 years ago
7

Suppose you are on a cart that is moving at a constant speed v toward the left on a frictionless track. If you throw a massive b

all straight up (from your perspective), how will the speed of the cart change?
a. The speed of the cart will increase
b. The speed of the cart will decrease
c. The speed of the cart will not change
d. You need to know how fast the ball was thrown
Physics
1 answer:
Alex2 years ago
6 0
The correct answer is A
You might be interested in
What happens to the electrons when you rub a balloon in your hair
777dan777 [17]

Answer:

When you rub a balloon on your head, electrons move from the atoms and molecules in your hair onto the balloon. Electrons have a negative charge, so the balloon becomes negatively charged, and your hair is left with a positive charge.

Explanation:

6 0
3 years ago
X-rays are used instead of visible light because X-rays have shorter ______________ than visible light, allowing them to produce
Novay_Z [31]
X-rays have shorter wavelength than visible light. But that's hardly the reason that they're used for medical imaging. xrays have much higher frequencies then visible light which means they have much greater penetrating ability. with xrays you can see inside the body. you can't do that with a visible flashlight no matter how bright and powerful it is.
4 0
3 years ago
Read 2 more answers
A car accelerates from 300 km/h to 140 km/h in 2.53 seconds. what is the distance covered?
Snowcat [4.5K]

Answer:

Acceleration = Change in Velocity/Time

Change in Velocity = 36-18 = 18 km/h=5 m/s

Time= 5 Seconds

Acceleration = 5/5= 1 m/s2

Equation of motion,s=ut+(1/2)at2

u=18 km/h=5 m/s

t=5 s

a=1 m/s2

s= (5*5)+(1/2*1*5*5)

s=25+12.5 i.e., s=37.5 m

Hope you are clear with my explanations

7 0
2 years ago
A cylindrical capacitor has an inner conductor of radius 2.7 mmmm and an outer conductor of radius 3.1 mmmm. The two conductors
Mars2501 [29]

Answer:

(A) Capacitance per unit length = 4.02 \times 10^{-10}

(B) The magnitude of charge on both conductor is Q = 4.22 \times 10^{-19} C and the sign of charge on inner conductor is +Q and the sign on outer conductor is -Q

Explanation:

Given :

Radius of inner part of conductor  (R_{1}) = 2.7 \times 10^{-3} m

Radius of outer part of conductor  (R_{2}) = 3.1 \times 10^{-3} m

The length of the capacitor (l) = 3 \times 10^{-3} m

(A)

Capacitance is purely geometrical property. It depends only on length, radius of conductor.

From the formula of cylindrical capacitor,      

     C = \frac{2\pi\epsilon_{o} l }{ln\frac{R_{2} }{R_{1} } }

Where, \epsilon_{o} = 8.85 \times 10^{-12}

But we need capacitance per unit length so,

     \frac{C}{l}  = \frac{2\pi\epsilon_{o}  }{ln\frac{R_{2} }{R_{1} } }

capacitance per unit length = \frac{6.28 \times 8.85 \times 10^{-12} }{ln(1.148)} = 4.02 \times 10^{-10}

(B)

The charge on both conductors is given by,

     Q = C \Delta V

Where, C = capacitance of cylindrical capacitor and value of C = 12.06 \times 10^{-13} F, \Delta V = 350 \times 10^{-3} V

∴ Q = 4.22 \times 10^{-19} C

The magnitude of charge on both conductor is same as above but the sign of charge is different.

Charge on inner conductor is +Q and Charge on outer conductor is -Q.

8 0
3 years ago
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
1 year ago
Read 2 more answers
Other questions:
  • Which of the following best characterizes the free energy change ΔG for an endothermic reaction under physiological conditions?A
    8·1 answer
  • Persuade a pet owner, who owns a 25kg dog, to restrain the pet while it is riding in the back of a pickup truck. INCLUDE 1st and
    11·1 answer
  • 100 POINTSSSS PLEASE HELP
    15·2 answers
  • An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
    14·2 answers
  • Venus has a radius of 6.05 x 106 m,
    5·1 answer
  • At what value of angle between two vectors will the resultant of the two vectors be maximum?
    14·1 answer
  • uniform mementum mas is 90g is pivoted at 40cm mark if the metra rula ia in equilibrium with an mark unknown mass m place at the
    11·1 answer
  • 3. A car travels at 30mph for 2hours and then 40mph
    11·1 answer
  • A spring (oriented horizontally, k = 40 N/m) is attached to the left side wall in a room whose floor is frictionless. A small, d
    8·1 answer
  • In the figure, a baseball is hit at a height h = 1.20 m and then caught at the same height. It travels alongside a wall, moving
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!