k = 5.29
a = 0.78m/s²
KE = 0.0765J
<u>Explanation:</u>
Given-
Mass of air tracker, m = 1.15kg
Force, F = 0.9N
distance, x = 0.17m
(a) Effective spring constant, k = ?
Force = kx
0.9 = k X0.17
k = 5.29
(b) Maximum acceleration, m = ?
We know,
Force = ma
0.9N = 1.15 X a
a = 0.78 m/s²
c) kinetic energy, KE of the glider at x = 0.00 m.
The work done as the glider was moved = Average force * distance
This work is converted into kinetic energy when the block is released. The maximum kinetic energy occurs when the glider has moved 0.17m back to position x = 0
As the glider is moved 0.17m, the average force = ½ * (0 + 0.9)
Work = Kinetic energy
KE = 0.450 * 0.17
KE = 0.0765J
Voltage is necessary for charge to flow
No because the whether changes constant, weather can be close but is not the 100% the correct answer,..
<span>Force = Work done / distance = 4Nm / 2m = 2N</span>
Answer:
Intensity
Explanation:
The intensity of a sound wave is equal to the ratio between to the power emitted by the source divided by the area of the spherical surface through which the wave propagates:

where
P is the power
is the area of the spherical surface
r is the distance from the source
As we see from the formula, the intensity is inversely proportional to the square of the distance from the source:

so, intensity is the correct answer.