Explanation:
Hole. Hole. Different notes can be played on the flute by blocking holes. ...
Drum skin. Drum skin. Hitting the bongo drum makes its tight elastic skin vibrate.
String. String. ...
Sound. hole. ...
Bow. Bow.
Answer:
2.5 s, 5 m
Explanation:
The equations for the horizontal and vertical position of Lukalu are:

we can find the time it takes her to reach the ground by requiring that the vertical position becomes zero:
y(t) = 0
So we find:

The horizontal distance of Lukalu instead will be given by the equation for the horizontal position, substituting t = 2.5 s:

If you draw the problem, it would look like that shown in the attached picture. The total length the ship will now travel can be solved using the Pythagorean theorem. The solution is as follows:
d = √(120)²+(100)²
d = 156.2 km
So, the ship will have to travel 156.2 km to the northwest direction.
Answer:
Writing with a pencil. The pencil pushes on the paper. The paper pushes on the pencil.
Explanation:
Newton's third law.
Answer:
The answer to the question is
The ladybug begins to slide
Explanation:
To solve the question we assume that the frictional force of the ladybug and the gentleman bug are the same
Where the frictional force equals
= μ×N = m×g×μ
and the centripetal force is given by m·ω²·r
If we denote the properties of the ladybug as 1 and that of the gentleman bug as 2, we have
m₁×g×μ = m₁·ω²·r₁ ⇒ g×μ = ω²·r₁
and for the gentleman bug we have
m₂×g×μ = m₂·ω²·r₂ ⇒ g×μ = ω²·r₂
But r₁ = 2×r₂
Therefore substituting the values of r₁ =2×r₂ we have
g×μ = ω²·r₁ = g×μ = ω²·2·r₂
Therefore ω²·r₂ = 0.5×g×μ for the ladybug. That is the ladybug has to overcome half the frictional force experienced by the gentleman bug before it start to slide
The ladybug begins to slide