Explanation:
There are several ways to define acids and bases, but pH and pOH refer to hydrogen ion concentration and hydroxide ion concentration, respectively. The "p" in pH and pOH stands for "negative logarithm of" and is used to make it easier to work with extremely large or small values. pH and pOH are only meaningful when applied to aqueous (water-based) solutions. When water dissociates it yields a hydrogen ion and a hydroxide.
Answer:
Yes
Explanation:
They are a unique type of eukaryote because they lack an important organelle: mitochondria. Mitochondria are essential for producing cellular energy in most eukaryotic cells. However, due to its habitat, it is able to acquire energy from a process called sulfur mobilization.
They are significant because they challenge the idea that eukaryotes need mitochondria to be classified as eukaryotic. However, they have other membrane-bound organelles such as a nucleus and Golgi apparatus, meaning they remain eukaryotic.
Research suggest they lost their mitochondria over time, rather than never having had them throughout their ancestry.
Because of all these reasons, they still meet the definition of a eukaryote.
Answer:
Explanation:
Lewis dot structures represent the symbol of an atom we're looking at and the number of valence electrons it has. This number is represented by the sum of dots around the symbol.
- Potassium is in group 1A, this means it only has one valence electron, so we draw K with one dot in its Lewis diagram;
- Argon is in group 8A, this means it has eight valence electrons, so we draw Ar with 8 dots around it in its Lewis diagram;
- Silicon is in group 4A, this means it has four valence electrons, so we draw Si with 4 dots around it in its Lewis diagram;
- Arsenic is in group 5A, this means it has five valence electrons, so we draw As with 5 dots around it in its Lewis diagram.
Those are represented in the image attached below:
Answer:
Explanation:
Given parameters:
Molarity of KOH = 0.26M
Volume of H₂SO₄ = 19.76mL
Molarity of H₂SO₄ = 0.20M
Unknown:
Volume of KOH = ?
Solution:
This is a neutralization reaction in which an acid reacts with a base to produce salt and water:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
We solve from the known to the unknown in the reaction.
The known is the acid and from there we can find the number of moles of the acid to be completely neutralized:
Number of moles of acid = molarity x volume
Number of moles of acid = 19.76 x 0.20 = 3.95mol
From the balanced reaction equation:
1 mole of acid reacts with 2 moles of the bases KOH
3.95mole of acid would react with 3.95moles x 2 of the base
Number of moles of reacting base = 7.90moles
To find the volume of base;
Volume of base = 
Volume =
= 30.40mL
Learn more:
Neutralization brainly.com/question/6447527
#learnwithBrainly