Fats are large molecules made of two types of molecules, glycerol and some type of fatty acid.
Answer:
0.0745 mole of hydrogen gas
Explanation:
Given parameters:
Number of H₂SO₄ = 0.0745 moles
Number of moles of Li = 1.5107 moles
Unknown:
Number of moles of H₂ produced = ?
Solution:
To solve this problem, we have to work from the known specie to the unknown one.
The known specie in this expression is the sulfuric acid, H₂SO₄. We can compare its number of moles with that of the unknown using a balanced chemical equation.
Balanced chemical equation:
2Li + H₂SO₄ → Li₂SO₄ + H₂
From the balanced equation;
Before proceeding, we need to obtain the limiting reagent. This is the reagent whose given proportion is in short supply. It determines the extent of the reaction.
2 mole of Li reacted with 1 mole of H₂SO₄
1.5107 mole of lithium will react with
= 0.7554mole of H₂SO₄
But we were given 0.0745 moles,
This suggests that the limiting reagent is the sulfuric acid because it is in short supply;
since 1 mole of sulfuric acid produced 1 mole of hydrogen gas;
0.0745 mole of sulfuric acid will produce 0.0745 mole of hydrogen gas
MnCl2(aq) is an ionic compound which will have the releasing of 2 Cl⁻ ions ions in water for every molecule of MnCl2 that dissolves.
MnCl2(s) --> Mn+(aq) + 2 Cl⁻(aq)
[Cl⁻] = 0.92 mol MnCl2/1L × 2 mol Cl⁻ / 1 mol MnCl2 = 1.8 M
The answer to this question is [Cl⁻] = 1.8 M
Benzaldehyde or C6H5CHO would not undergo the aldol condensation because it does not contain an alpha-hydrogen in its structure. Aldol condensation is a type of reaction that happens between an enolate and an aldehyde or ketone leading to a alkene that has a planar structure. The lack of an alpha-hydrogen would not allow for it to undergo such process since it cannot enolize. Benzaldehyde undergoes a nucleophilic reaction known as Claisen-Schmidt condensation. It has somehow same mechanism of the aldol reaction however, the nucleophilic attack on the carbonyl happens even without the alpha-hydrogen but with an enolate that is from a ketone.