3. volume of gas because its changing because of the temperature
4. 67.6 breaths per minute
65+73+67+71+62=338/5=67.6
^because there are five terms that we added
Answer:
Explanation:
Temperature and thermal energy are in a direct proportion which means that if temperature of a substance increases, its thermal energy also increases and vice versa.
Hope this helped!
<h3>~AH1807</h3>
Answer:
Mole fraction O₂= 0.43
Explanation:
Mole fraction is the moles of gas/ total moles.
Let's determine the moles of each:
Moles O₂ → 15.1 g / 16 g/mol = 0.94
Moles N₂ → 8.19 g / 14 g/mol = 0.013
Moles H₂ → 2.46 / 2 g/mol = 1.23
Total moles = 2.183
Mole fraction O₂= 0.94 / 2.183 → 0.43
Answer:
Production of liquid oxygen from air Oxygen is generated by liquefaction of atmospheric air in the air separation unit (ASU). Cryogenic technique is the most commonly used for producing liquid oxygen for industrial and medical applications .
Explanation:
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)