This question is describing two chemical equations whereby the concentration of ammonia has to be determined. The first reaction is between 25.00 mL of ammonia and 50.00 mL of 0.100-M HCl whose excess was neutralized with 21.50 mL of 0.050-M Na₂CO₃ and thus, the concentration ammonia in the cloudy solution was determined as 0.114 M.
First of all we need to go over the titration of the excess HCl with Na₂CO₃ by writing the chemical equation it takes place when they react:

Whereas the mole ratio of HCl to Na₂CO₃ is 2:1 and the volume of the HCl leftover is determined as follows:

Next, we infer that the consumed volume of HCl by the ammonia solution was:

Then, we write the chemical equation that takes place between ammonia and HCl:

Whereas the mole ratio is now 1:1, which means that the concentration of ammonia was:

Learn more:
Answer: I remember looking out of the car as we pulled up to the Frantz school.”
“I thought maybe it was Mardi Gras.”
“As we walked through the crowd, I didn’t see any faces.”
“[The school] looked bigger and nicer than my old school.”
“The crowd behind us made me think this was an important place.”
“It must be college, I thought to myself.
Explanation:
We know that:
number of moles (n) = mass / molar mass
Now, from the general law of gases:
PV = nRT
where:
P is the pressure = 500 torr = 0.65 atm
V is the volume
n is the number of moles
R is the gas constant = 0.082
T is the temperature = 300 k
We will just rearrange this equation as follows:
P = nRT / V
Then we will substitute n with its equivalent equation mentioned at the beginning:
P = (mass x R x T) / (volume x molar mass) ......> equation I
Now, we know that:
density = mass / volume
We will substitute (mass/volume) in equation I with density as follows:
P = (density x R x T) / molar mass
Rearrange this equation to get the mass as follows:
molar mass = <span>dRT/P = (0.216 x 0.082 x 300) / 0.65 = 8.4738 grams
</span>
From the periodic table:
molecular mass of hydrogen = 1 grams
molecular mass of nitrogen = 14 grams
Therefore:
molar mass of hydrogen = 2 x 1 = 2 grams
molar mass of nitrogen = 2 x 14 = 28 grams
We can assume that the number of moles of of each element is y.
We can thus build up the following equation:
2y + 28y = 8.4738
30y = 8.4738
y = 0.28246
Therefore:
mole fraction of hydrogen = 2 x 0.28246 = 0.56492
mole fraction of nitrogen = 28 x 0.28246 = 7.90888
Compound Formula CuF2
Appearance White crystalline powder
Melting Point 836° C (1,537° F)
Boiling Point 1,676° C (3,049° F)
Density 4.23 g/cm3
Hope I helped