Answer:
1 greater distances fallen in successive seconds
Explanation:
When a body falls freely it is subjected to the action of the force of gravity, which gives an acceleration of 9.8 m / s2, consequently, we are in an accelerated movement
If we use the kinematic formula we can find the position of the body
Y = Vo t + ½ to t2
Where the initial velocity is zero or constant and the acceleration is the acceleration of gravity
Y = - ½ g t2 = - ½ 9.8 t2 = -4.9 t2
Let's look for the position for successive times
t (s) Y (m)
1 -4.9
2 -19.6
3 -43.2
The sign indicates that the positive sense is up
It can be clearly seen that the distance is greatly increased every second that passes
Answer:
HERE IS YOUR ANSWER
Explanation:
PLEASE MARK MY ANSWER AS BRAINLIEST IF THE ANSWERS ARE CORRECT .
Beacuse of the loose connection of the wire .
Straight
Answer:
true
Explanation:
i believe that's the answer hope that helps
780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.
<span>Is it true that nighttime air temperatures on a cloudy night are lower than they would be on a clear night?</span>