the answer is d, cuz i just did it rn on my study island and i got it right :)
The empirical formula of benzene is CH
Explanation:
Assuming that moles of nitrogen present are 0.227 and moles of hydrogen are 0.681. And, initially there are 0.908 moles of gas particles.
This means that, for
moles of
+ moles of
= 0.908 mol
Since, 2 moles of
=
= 0.454 mol
As it is known that the ideal gas equation is PV = nRT
And, as the temperature and volume were kept constant, so we can write
=
= 
=
= 5.2 atm
Therefore, we can conclude that the expected pressure after the reaction was completed is 5.2 atm.
Answer:
4) 4Fe + 3O₂ → 2Fe₂O₃
Explanation:
4Fe + 3O₂ → 2Fe₂O₃
In this equation the numbers of atoms are same in both side. There are four iron and six oxygen atoms are present on left and right side of equation. That's why atoms are conserved. This equation completely followed the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Answer:
1. C = 0.73 M.
2. pH = 0.14
Explanation:
The reaction is the following:
HCl + NH₃ ⇄ NH₄⁺Cl⁻
From the titration, we can find the number of moles of HCl that were neutralized by the ammonia.

Where "a" is for acid and "b" is for base.
The number of moles is:
Where "C" is for concentration and "V" for volume.


Hence the initial concentration of the acid is 0.73 M.
The original pH of the acid is given by:
![pH = -log([H^{+}])](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%28%5BH%5E%7B%2B%7D%5D%29%20)
Therefore, the original pH of the acid is 0.14.
I hope it helps you!