H2O2(I)
C6H6(O)
CO2(I)
C2H6(O)
HNO3(I)
i think its MIDDLE FINGERS UP IN THE SKY AND AT THESE AHOLE MODERATORS
Answer:
i do not know the answer but pls give a heart and five starts so i can ask questions pls
Explanation:
Rate law for the given 2nd order reaction is:
Rate = k[a]2
Given data:
rate constant k = 0.150 m-1s-1
initial concentration, [a] = 0.250 M
reaction time, t = 5.00 min = 5.00 min * 60 s/s = 300 s
To determine:
Concentration at time t = 300 s i.e. ![[a]_{t}](https://tex.z-dn.net/?f=%5Ba%5D_%7Bt%7D)
Calculations:
The second order rate equation is:
![1/[a]_{t} = kt +1/[a]](https://tex.z-dn.net/?f=1%2F%5Ba%5D_%7Bt%7D%20%3D%20kt%20%2B1%2F%5Ba%5D)
substituting for k,t and [a] we get:
1/[a]t = 0.150 M-1s-1 * 300 s + 1/[0.250]M
1/[a]t = 49 M-1
[a]t = 1/49 M-1 = 0.0204 M
Hence the concentration of 'a' after t = 5min is 0.020 M
Aqueous solutions of barium nitrate and potassium phosphate are mixed.
What is the precipitate and how many molecules are formed?
Barium nitrate has a chemical symbol of Ba(NO3)2 and potassium phosphate
has a chemical symbol K2PO4. The reaction between these two is a double
replacement reaction yielding barium phosphate and potassium nitrate.
The chemical equation representing the reaction is,
Ba(NO3)2 + K2PO4 à KNO3 +
BaPO4